Mechanics of Bioinspired Soft Slender Actuators for Programmable Multimodal Deformation

用于可编程多模态变形的仿生软细长执行器的力学

基本信息

  • 批准号:
    2318188
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Soft slender actuators are active structures that have one dimension much larger than the other dimensions, and are ubiquitous in nature. In general, these structures have an infinite number of degrees of freedom, making them challenging to manipulate with high precision. There is an urgent need for efficient theoretical and computational tools to guide actuator design for high precision actuation. Inspired by elephant-trunk motion, this project fundamentallly investigates the mechanics of soft slender actuators under programmable multimodal actuation. Dimensional reduction makes the proposed model computationally efficient, inexpensive, and robust, especially with a view towards large deformations and inverse analyses. Proposed activties can provide opportunities to transform soft robotic research from a trial-and-error approach to a science-based design strategy. The work can serve as a platform to promote STEM education. After validation, the model will be implemented in an open-source simulator that can be used by students, educators, and researchers in the soft robotics community. The model will inform new design strategies for soft robots in various high-precision applications including wearable devices, flexible electronics, and surgical robotics.This project integrates theoretical modeling, computational mechanics, material multiphysics, experimental mechanics, and machine learning to address the research problem. Mechanics models and experimental validation will be combined to establish an open-source simulation platform to optimize the design of such actuators. The underlying construct is the active filament theory that harnesses the concept of dimensional reduction—from a fully three-dimensional structure to an active Kirchhoff rod—by describing deformation exclusively through extension, curvature, and torsion. It will create an open-source simulator that will be shared with the broader, soft robotics, community . The research will first establish a new mechanics theory to predict the trajectory of the end effector of a soft slender actuator. It can then serve as the foundation to optimize the trajectory of the end effector. The new theory will be validated via experiments through the actuation of liquid crystal elastomer fibers. This project will involve the simultaneous development of theory and experiments and will iteratively revise both activities to ultimately establish an experimentally validated theory and an optimal design model with high predicting accuracy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
柔性细长驱动器是一类一维比其他维度大得多的主动结构,在自然界中普遍存在。一般来说,这些结构具有无限多的自由度,这使得它们难以高精度地操纵。有一个迫切需要有效的理论和计算工具,以指导高精度致动器的设计。受象鼻运动的启发,该项目从根本上研究了可编程多模式驱动下柔性细长致动器的力学原理。降维使所提出的模型计算效率高,成本低,鲁棒性,特别是对大变形和逆分析的观点。拟议的活动可以提供机会,将软机器人研究从试错法转变为基于科学的设计策略。这项工作可以作为促进STEM教育的平台。经过验证后,该模型将在开源模拟器中实现,可供软机器人社区的学生,教育工作者和研究人员使用。该模型将为可穿戴设备、柔性电子和手术机器人等各种高精度应用中的软机器人提供新的设计策略。该项目将理论建模、计算力学、材料多物理场、实验力学和机器学习相结合,以解决研究问题。将力学模型和实验验证相结合,建立一个开源的仿真平台,以优化这种致动器的设计。基本的结构是主动细丝理论,利用降维的概念,从一个完全三维的结构,一个积极的基尔霍夫棒,通过描述变形专门通过延伸,曲率和扭转。它将创建一个开源模拟器,并与更广泛的软机器人社区共享。本研究将首先建立一个新的力学理论,以预测柔性细长驱动器末端执行器的轨迹。然后,它可以作为优化末端执行器轨迹的基础。新的理论将通过液晶弹性体纤维的驱动实验进行验证。该项目将涉及理论和实验的同时发展,并将反复修改这两项活动,最终建立一个实验验证的理论和一个最佳的设计模型,具有高预测精度。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ellen Kuhl其他文献

Brittle fracture during folding of rocks: A finite element study
岩石折叠过程中的脆性断裂:有限元研究
  • DOI:
    10.1080/14786430802320101
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    P. Jäger;Stefan M. Schmalholz;Daniel W. Schmid;Ellen Kuhl
  • 通讯作者:
    Ellen Kuhl
Minimal Design of the Elephant Trunk as an Active Filament.
象鼻作为活性细丝的最小设计。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bartosz Kaczmarski;Sophie Leanza;Renee Zhao;Ellen Kuhl;Derek E. Moulton;Alain Goriely
  • 通讯作者:
    Alain Goriely
Biaxial testing and sensory texture evaluation of plant-based and animal deli meat
植物基和动物熟食肉的双轴测试和感官质地评估
  • DOI:
    10.1016/j.crfs.2025.101080
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    7.000
  • 作者:
    Skyler R. St. Pierre;Lauren Somersille Sibley;Steven Tran;Vy Tran;Ethan C. Darwin;Ellen Kuhl
  • 通讯作者:
    Ellen Kuhl
Machine learning reveals correlations between brain age and mechanics
机器学习揭示了大脑年龄与力学之间的相关性
  • DOI:
    10.1016/j.actbio.2024.10.003
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Mayra Hoppstädter;Kevin Linka;Ellen Kuhl;Marion Schmicke;Markus Böl
  • 通讯作者:
    Markus Böl
Discovering a reaction–diffusion model for Alzheimer’s disease by combining PINNs with symbolic regression
通过将物理信息神经网络(PINNs)与符号回归相结合,发现了一种阿尔茨海默病的反应扩散模型

Ellen Kuhl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ellen Kuhl', 18)}}的其他基金

Automated Model Discovery for Soft Matter
软物质的自动模型发现
  • 批准号:
    2320933
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Understanding Neurodegeneration Across the Scales
了解不同尺度的神经退行性变
  • 批准号:
    1727268
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
INSPIRE: Optogenetic Control of the Human Heart - Turning Light into Force
INSPIRE:人类心脏的光遗传学控制 - 将光转化为力量
  • 批准号:
    1233054
  • 财政年份:
    2012
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Computer Models in Biomechanics; Stanford, California; August 29 - September 02, 2011
国际理论与应用力学联合会(IUTAM)生物力学计算机模型研讨会;
  • 批准号:
    1050504
  • 财政年份:
    2011
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: The Virtual Heart - Exploring the Structure-function Relationship in Electroactive Cardiac Tissue
职业:虚拟心脏 - 探索电活性心肌组织的结构与功能关系
  • 批准号:
    0952021
  • 财政年份:
    2010
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似海外基金

Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
  • 批准号:
    DE240101045
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Early Career Researcher Award
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
  • 批准号:
    2344460
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
  • 批准号:
    2347477
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
  • 批准号:
    DP240100145
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Projects
Bioinspired Membranes for Water Purification
用于水净化的仿生膜
  • 批准号:
    EP/Y001443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
  • 批准号:
    EP/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
  • 批准号:
    DP240102628
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Projects
Bioinspired Design: Unforeseen Pathways to impact arising from AHRC funded Bioinspired Textiles Research
仿生设计:AHRC 资助的仿生纺织品研究产生不可预见的影响途径
  • 批准号:
    AH/X004473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了