Automated Model Discovery for Soft Matter
软物质的自动模型发现
基本信息
- 批准号:2320933
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In solid mechanics, a constitutive relation describes a material’s response to external stimuli, such as forces. Constitutive modeling and parameter identification are the cornerstones of the mechanics of materials and structures. The current gold standard in constitutive modeling is to first select a model and then fit its parameters to data. However, the scientific criteria for model selection are poorly understood and depend largely on user experience and personal preference. This award seeks to democratize constitutive modeling through automated model discovery and make it accessible to a more inclusive and diverse community. The main deliverable is an open source discovery platform that will discover the best model and parameters, entirely without human interaction. This open source platform will feature a new family of neural networks, data, models, and parameters. It will be freely available to a wide range of users, regardless of their institutional or financial resources. As such, automated model discovery will lower the barrier of entry into the STEM fields and foster a more inclusive and diverse scientific community. This project has broad scientific, social, and economic impacts. It will democratize constitutive modeling, stimulate discovery in the mechanics of materials and structures, establish machine learning tools to characterize, create, and functionalize soft matter, and train the next generation of civil, mechanical, and manufacturing innovators to use these new technologies. The goal of this research is to establish neural networks that autonomously discover models for soft matter systems. Instead of using classical neural networks that provide no insight into the underlying physics, this project designs its own constitutive neural networks. To train, test, and validate these networks, this project will generate an open source library with benchmark data from dozens of living and engineered materials. All networks, data, models, and parameters of this project will be freely available to promote engineering education and advance scientific knowledge. This project has the potential to induce a paradigm shift in constitutive modeling, from user-defined model selection to automated model discovery. This could forever change how we simulate materials and structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在固体力学中,本构关系描述了材料对外部刺激(如力)的反应。本构模型和参数识别是材料和结构力学的基石。目前本构建模的黄金标准是首先选择一个模型,然后将其参数与数据进行匹配。然而,人们对模型选择的科学标准知之甚少,在很大程度上取决于用户体验和个人偏好。该奖项旨在通过自动模型发现使本构模型大众化,并使其能够被更具包容性和多样性的社区访问。主要成果是一个开源的发现平台,它将发现最佳的模型和参数,完全不需要人工交互。这个开源平台将以一系列新的神经网络、数据、模型和参数为特色。它将向广泛的用户免费提供,无论他们的机构或财政资源如何。因此,自动模型发现将降低进入STEM领域的门槛,并培养一个更具包容性和多样性的科学界。该项目具有广泛的科学、社会和经济影响。它将使本构模型大众化,促进材料和结构力学的发现,建立机器学习工具来表征、创造软物质并使其功能化,并培训下一代民用、机械和制造创新者使用这些新技术。这项研究的目标是建立神经网络,自动发现软物质系统的模型。该项目没有使用经典的神经网络,而是设计了自己的构成神经网络,而不是提供对潜在物理的洞察。为了训练、测试和验证这些网络,该项目将生成一个开放源代码库,其中包含来自数十种生物和工程材料的基准数据。该项目的所有网络、数据、模型和参数都将免费提供,以促进工程教育和提高科学知识。该项目有可能导致本构模型的范式转变,从用户定义的模型选择到自动模型发现。这可能会永远改变我们模拟材料和结构的方式。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ellen Kuhl其他文献
Brittle fracture during folding of rocks: A finite element study
岩石折叠过程中的脆性断裂:有限元研究
- DOI:
10.1080/14786430802320101 - 发表时间:
2008 - 期刊:
- 影响因子:1.6
- 作者:
P. Jäger;Stefan M. Schmalholz;Daniel W. Schmid;Ellen Kuhl - 通讯作者:
Ellen Kuhl
Minimal Design of the Elephant Trunk as an Active Filament.
象鼻作为活性细丝的最小设计。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.6
- 作者:
Bartosz Kaczmarski;Sophie Leanza;Renee Zhao;Ellen Kuhl;Derek E. Moulton;Alain Goriely - 通讯作者:
Alain Goriely
Biaxial testing and sensory texture evaluation of plant-based and animal deli meat
植物基和动物熟食肉的双轴测试和感官质地评估
- DOI:
10.1016/j.crfs.2025.101080 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:7.000
- 作者:
Skyler R. St. Pierre;Lauren Somersille Sibley;Steven Tran;Vy Tran;Ethan C. Darwin;Ellen Kuhl - 通讯作者:
Ellen Kuhl
Machine learning reveals correlations between brain age and mechanics
机器学习揭示了大脑年龄与力学之间的相关性
- DOI:
10.1016/j.actbio.2024.10.003 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:9.600
- 作者:
Mayra Hoppstädter;Kevin Linka;Ellen Kuhl;Marion Schmicke;Markus Böl - 通讯作者:
Markus Böl
Discovering a reaction–diffusion model for Alzheimer’s disease by combining PINNs with symbolic regression
通过将物理信息神经网络(PINNs)与符号回归相结合,发现了一种阿尔茨海默病的反应扩散模型
- DOI:
10.1016/j.cma.2023.116647 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:7.300
- 作者:
Zhen Zhang;Zongren Zou;Ellen Kuhl;George Em Karniadakis - 通讯作者:
George Em Karniadakis
Ellen Kuhl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ellen Kuhl', 18)}}的其他基金
Mechanics of Bioinspired Soft Slender Actuators for Programmable Multimodal Deformation
用于可编程多模态变形的仿生软细长执行器的力学
- 批准号:
2318188 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Understanding Neurodegeneration Across the Scales
了解不同尺度的神经退行性变
- 批准号:
1727268 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
INSPIRE: Optogenetic Control of the Human Heart - Turning Light into Force
INSPIRE:人类心脏的光遗传学控制 - 将光转化为力量
- 批准号:
1233054 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Computer Models in Biomechanics; Stanford, California; August 29 - September 02, 2011
国际理论与应用力学联合会(IUTAM)生物力学计算机模型研讨会;
- 批准号:
1050504 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: The Virtual Heart - Exploring the Structure-function Relationship in Electroactive Cardiac Tissue
职业:虚拟心脏 - 探索电活性心肌组织的结构与功能关系
- 批准号:
0952021 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Discovery of craniofacial genes capable of compensation through evolutionary mutant model
通过进化突变模型发现能够补偿的颅面基因
- 批准号:
10606667 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
BRC-BIO: Model-driven discovery and characterization of the metabolism of pigment-producing microalgae at genome-scale
BRC-BIO:模型驱动的基因组规模色素产生微藻代谢的发现和表征
- 批准号:
2313313 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of an innervated in vitro Osteoarthritis Model for Drug Discovery and Drug Screening
开发用于药物发现和药物筛选的神经支配体外骨关节炎模型
- 批准号:
10040740 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Curation of Model Organism Phenotype and Disease Model Data to Augment Gabriella Miller Kid's First Data Sets for Enhanced Discovery and Therapeutic Development
管理模型生物表型和疾病模型数据,以扩充 Gabriella Miller Kid 的第一个数据集,以增强发现和治疗开发
- 批准号:
10592437 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Developing a Human-Based Chimeric Retinal Organoid Model for use in Stem Cell Treatment Discovery for Inherited Retinal Diseases
开发基于人的嵌合视网膜类器官模型,用于发现遗传性视网膜疾病的干细胞治疗
- 批准号:
486596 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship Programs
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
- 批准号:
RGPIN-2019-05163 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Development and characterisation of organ-on-a-chip model of the endometrium for disease modelling and drug discovery
用于疾病建模和药物发现的子宫内膜器官芯片模型的开发和表征
- 批准号:
2840156 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
A Quantitative platform to expedite gene and genomic discovery from model species to crops and wild berries.
一个定量平台,可加快从模式物种到农作物和野生浆果的基因和基因组发现。
- 批准号:
RTI-2023-00174 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Tools and Instruments
Validating a novel microfluidic platform as an ex vivo tumour model for sarcoma drug discovery
验证新型微流体平台作为肉瘤药物发现的离体肿瘤模型
- 批准号:
486298 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship Programs