ATD: Quantum algorithms for spatiotemporal models with applications to threat detection

ATD:时空模型的量子算法及其在威胁检测中的应用

基本信息

  • 批准号:
    2319279
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Human dynamics are used to seek comprehension of human behaviors by employing statistical models. Research has demonstrated that certain human behaviors can be quantitatively modeled using proxy tools such as social media. The field of human dynamics has gained significant attention in the realm of security and defense, not only for its potential to detect anomalies in human behavior but also for its capacity to mitigate potential catastrophic damage and societal distress. Despite the pressing need, state-of-the-art computational tools for studying human dynamics are still lacking. However, classic models alone are insufficient for capturing the constantly evolving spatial and temporal trends in human dynamics. Additionally, the computational cost of spatiotemporal models on classical computers is prohibitively high, posing challenges for real-time analysis of human dynamics data. Recent advancements in quantum computing have showcased quantum supremacy, wherein quantum computers outperform classical computers in some problem-solving. Quantum parallelism, in particular, bypasses the time/space trade-off associated with classical parallel computing, thanks to its ability to store exponentially many units of information within a linear physical space. Moreover, quantum computers possess logic gates that classical computers lack, enabling faster computations. However, the achievements of quantum computing in the literature have been predominantly limited to physics-oriented problems and have not garnered much attention from the data science community. In this project, our aim is to harness the power of quantum algorithms for modeling human dynamics to enhance threat detection capabilities. Our proposed approaches are general quantum computing tools that are widely applicable. The proposed framework (i) can be used to discover unusual events in any super-large data set, (ii) inspires a new line of research in quantum computing, and (iii) offers a unique opportunity for students to participate in cutting-edge and interdisciplinary big data research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类动力学是通过使用统计模型来寻求对人类行为的理解。研究表明,某些人类行为可以使用代理工具(如社交媒体)进行定量建模。人类动力学领域在安全和国防领域受到了极大的关注,不仅因为它有可能发现人类行为中的异常现象,而且因为它有能力减轻潜在的灾难性损害和社会痛苦。尽管迫切需要,研究人类动力学的最先进的计算工具仍然缺乏。然而,经典模型本身不足以捕捉人类动态中不断变化的时空趋势。此外,时空模型在经典计算机上的计算成本过高,对人体动态数据的实时分析提出了挑战。量子计算的最新进展展示了量子霸权,其中量子计算机在一些问题解决方面优于经典计算机。特别是量子并行,由于能够在线性物理空间内存储指数级多的信息单位,它绕过了与经典并行计算相关的时间/空间权衡。此外,量子计算机拥有经典计算机所缺乏的逻辑门,可以实现更快的计算。然而,在文献中,量子计算的成就主要局限于物理导向的问题,并没有引起数据科学界的太多关注。在这个项目中,我们的目标是利用量子算法的力量来建模人类动力学,以增强威胁检测能力。我们提出的方法是广泛适用的通用量子计算工具。提出的框架(i)可用于发现任何超大数据集中的异常事件,(ii)激发量子计算的新研究方向,(iii)为学生参与前沿和跨学科的大数据研究提供了独特的机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Ma其他文献

Large-sized graphene oxide nanosheets increase DC–T cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2.
大尺寸氧化石墨烯纳米片可增加 DC-T 细胞突触接触以及 DC 疫苗针对 SARS-CoV-2 的功效。
  • DOI:
    10.1002/adma.202102528
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Qianqian Zhou;Hongjing Gu;Sujing Sun;Yulong Zhang;Yangyang Hou;Chenyan Li;Yan Zhao;Ping Ma;Liping Lv;Subi Aji;Shihui Sun;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus
中国太湖北端沉积物风险评估:化学分析和摇蚊慢性毒性测试相结合
Design of cold-formed thin-walled steel fixed-ended channels with complex edge stiffeners under axial compressive load by direct strength method
轴向压缩载荷下复杂边缘冷弯薄壁型钢固定端槽钢直接强度法设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chun Gang Wang;Ping Ma;Dai Jun Song;Xin Yong Yu
  • 通讯作者:
    Xin Yong Yu
Noninvasive imaging of hepatocyte IL-6/STAT3 signaling pathway for evaluating inflammation responses induced by end-stage stored whole blood transfusion
肝细胞IL-6/STAT3信号通路无创成像评估终末期储存全血输注引起的炎症反应
  • DOI:
    10.1007/s10529-019-02688-0
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhengjun Wang;Yulong Zhang;Qianqian Zhou;Ping Ma;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury
Kindlin-2 与 Rho GDP 解离抑制剂 α 的关联抑制 Rac1 激活和足细胞损伤
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Sun;Chen Guo;Ping Ma;Yumei Lai;Fan Yang;Jun Cai;Yi Deng;Guozhi Xiao;Chuanyue Wu
  • 通讯作者:
    Chuanyue Wu

Ping Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Ma', 18)}}的其他基金

Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
ATD: Nonparametric Testing and Fast Computing Methods for Spatiotemporal Models with Applications to Threat Detection
ATD:时空模型的非参数测试和快速计算方法及其在威胁检测中的应用
  • 批准号:
    1925066
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1440037
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1438957
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1222718
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1055815
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Statistical Approaches to Integration of Mass Spectral and Genomic Data of Yeast Histone Modifications
酵母组蛋白修饰的质谱和基因组数据整合的统计方法
  • 批准号:
    0800631
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CMG: Collaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG:协作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
  • 批准号:
    0723759
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
  • 批准号:
    EP/Y005058/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
  • 批准号:
    2330130
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Developing Quantum Algorithms for High-Entropy Alloy Discovery
职业:开发用于高熵合金发现的量子算法
  • 批准号:
    2239216
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Can quantum algorithms revolutionise the simulation of turbulent flows?
量子算法能否彻底改变湍流模拟?
  • 批准号:
    EP/X017249/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Quantum algorithms for discrete spacetimes
离散时空的量子算法
  • 批准号:
    2882937
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了