CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
基本信息
- 批准号:1055815
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Remote sensing of the Earth's deep interior is challenging. Direct sampling of the Earth's deep interior is impossible due to the extreme pressures and temperatures. Our knowledge of the Earth?s deep interior is thus pieced together from a range of surface observations. Among surface observations, seismic waves emitted by earthquakes are effective probes of the Earth?s deep interior and are relatively inexpensively recorded by networks of seismographs at the Earth's surface. Unprecedented volumes of seismic data brought by dense global seismograph networks offer researchers both opportunities and challenges to explore the Earth?s deep interior. The key challenge is that directly applying statistical methods to this ultra-large sample seismic data using current computing resources is prohibitive. To facilitate geophysical discoveries that can enhance our understanding of the Earth?s deep interior using current computing resources, the investigator proposes a family of novel statistical methods under a subsampling framework. The proposed methods provide an opportunity to study various distinct statistical problems, such as function estimation and variable selection, in a unified framework. The investigator will establish asymptotic and finite sample theory to investigate the approximation accuracy and consistency of the proposed methods.How to analyze ultra-large sample data creates a significant challenge in almost all fields of science and engineering. Scientists and engineers develop various solutions to tackle the problem, such as developing cloud computing for aggregating a wide range of computing resources and building powerful supercomputers. However, the high cost of these solutions creates an extraordinary budget barrier for researchers. The proposed subsampling methods provide alternative methods to surmount this challenge. The theory to be established will benefit a wide spectrum of research in science and engineering. They will offer a unique educational experience for both undergraduate and graduate students to participate in cutting-edge statistical and interdisciplinary research and inspire new lines of researches in three distinct fields: statistics, geophysics, and computational biology.
对地球内部深处的遥感具有挑战性。由于极端的压力和温度,直接对地球深处进行取样是不可能的。我们对地球的认识?因此,从一系列的表面观测中拼凑出了地球的深层内部。在地表观测中,地震发出的地震波是对地球的有效探测。在地球的内部深处,相对便宜地被地球表面的地震仪网络记录下来。密集的全球地震仪网络带来了前所未有的地震数据量,为研究人员探索地球提供了机遇和挑战。s深的内部。关键的挑战是,使用当前的计算资源直接将统计方法应用于这种超大样本地震数据是禁止的。以促进地球物理发现,可以提高我们对地球的了解?的深层内部利用现有的计算资源,调查员提出了一个新的统计方法下的子抽样框架。所提出的方法提供了一个机会,研究各种不同的统计问题,如函数估计和变量选择,在一个统一的框架。研究人员将建立渐近和有限样本理论来研究所提出的方法的近似精度和一致性。如何分析超大样本数据几乎在所有科学和工程领域都是一个重大挑战。 科学家和工程师开发了各种解决方案来解决这个问题,例如开发云计算来聚合广泛的计算资源和构建强大的超级计算机。 然而,这些解决方案的高成本给研究人员带来了巨大的预算障碍。拟议的二次抽样方法提供了替代方法来克服这一挑战。该理论的建立将有利于科学和工程领域的广泛研究。他们将为本科生和研究生提供独特的教育体验,参与尖端的统计和跨学科研究,并激发三个不同领域的新研究方向:统计学,物理学和计算生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ping Ma其他文献
Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus
中国太湖北端沉积物风险评估:化学分析和摇蚊慢性毒性测试相结合
- DOI:
10.1007/s00244-015-0162-7 - 发表时间:
2015-05 - 期刊:
- 影响因子:4
- 作者:
Hongxue Qi;Ping Ma;Huizhen Li;Jing You - 通讯作者:
Jing You
Noninvasive imaging of hepatocyte IL-6/STAT3 signaling pathway for evaluating inflammation responses induced by end-stage stored whole blood transfusion
肝细胞IL-6/STAT3信号通路无创成像评估终末期储存全血输注引起的炎症反应
- DOI:
10.1007/s10529-019-02688-0 - 发表时间:
2019-05 - 期刊:
- 影响因子:2.7
- 作者:
Zhengjun Wang;Yulong Zhang;Qianqian Zhou;Ping Ma;Xiaohui Wang;Linsheng Zhan - 通讯作者:
Linsheng Zhan
Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury
Kindlin-2 与 Rho GDP 解离抑制剂 α 的关联抑制 Rac1 激活和足细胞损伤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ying Sun;Chen Guo;Ping Ma;Yumei Lai;Fan Yang;Jun Cai;Yi Deng;Guozhi Xiao;Chuanyue Wu - 通讯作者:
Chuanyue Wu
Design of cold-formed thin-walled steel fixed-ended channels with complex edge stiffeners under axial compressive load by direct strength method
轴向压缩载荷下复杂边缘冷弯薄壁型钢固定端槽钢直接强度法设计
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Chun Gang Wang;Ping Ma;Dai Jun Song;Xin Yong Yu - 通讯作者:
Xin Yong Yu
Large-sized graphene oxide nanosheets increase DC–T cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2.
大尺寸氧化石墨烯纳米片可增加 DC-T 细胞突触接触以及 DC 疫苗针对 SARS-CoV-2 的功效。
- DOI:
10.1002/adma.202102528 - 发表时间:
2021 - 期刊:
- 影响因子:29.4
- 作者:
Qianqian Zhou;Hongjing Gu;Sujing Sun;Yulong Zhang;Yangyang Hou;Chenyan Li;Yan Zhao;Ping Ma;Liping Lv;Subi Aji;Shihui Sun;Xiaohui Wang;Linsheng Zhan - 通讯作者:
Linsheng Zhan
Ping Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ping Ma', 18)}}的其他基金
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
- 批准号:
2311297 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
- 批准号:
2319279 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ATD: Nonparametric Testing and Fast Computing Methods for Spatiotemporal Models with Applications to Threat Detection
ATD:时空模型的非参数测试和快速计算方法及其在威胁检测中的应用
- 批准号:
1925066 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
- 批准号:
1440037 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
- 批准号:
1438957 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
- 批准号:
1222718 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Statistical Approaches to Integration of Mass Spectral and Genomic Data of Yeast Histone Modifications
酵母组蛋白修饰的质谱和基因组数据整合的统计方法
- 批准号:
0800631 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CMG: Collaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG:协作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
- 批准号:
0723759 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
CIF: Small: Statistically Optimal Subsampling for Big Data and Rare Events Data
CIF:小:大数据和稀有事件数据的统计最佳子采样
- 批准号:
2105571 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Subsampling Methods and Distribution Free Learning with Relational Data
关系数据的子采样方法和分布自由学习
- 批准号:
516999-2018 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Postdoctoral Fellowships
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
DGECR-2018-00355 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Launch Supplement
Robust model discrimination designs and robust subsampling for big data regression
用于大数据回归的稳健模型判别设计和稳健子采样
- 批准号:
RGPIN-2018-04451 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Subsampling Methods and Distribution Free Learning with Relational Data
关系数据的子采样方法和分布自由学习
- 批准号:
516999-2018 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Postdoctoral Fellowships