Statistical Approaches to Integration of Mass Spectral and Genomic Data of Yeast Histone Modifications

酵母组蛋白修饰的质谱和基因组数据整合的统计方法

基本信息

  • 批准号:
    0800631
  • 负责人:
  • 金额:
    $ 59.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-15 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

New statistical and analytical methods will be developed to study regulatory role of histone modifications in Saccharomyces cerevisiae. Gene activities in eukaryotic cells are concertedly regulated by transcription factors and chromatin structure. The basic repeating unit of chromatin is the nucleosome, an octamer containing two copies each of four core histone proteins. While nucleosome occupancy in promoter regions typically occludes transcription factor binding, thereby repressing global gene expression, the role of histone modification is more complex. Histone tails can be modified in various ways, including acetylation, methylation, phosphorylation, and ubiquitination. Even the regulatory role of histone acetylation, the best characterized modification to date, is still not fully understood. Mass spectral and genome-wide microarray data from Saccharomyces cerevisiae have offered new opportunities for investigators to evaluate the regulatory effects of histone modifications. The investigators will develop statistical methods for identifying target genes of histone modifications and associated DNA sequence features of histone modifications. The investigators will also develop computational and statistical methods for predicting histone modifications and their interactions. Experimental data are noisy and high dimensional, which renders many tradition statistical methods ineffective. How to build prediction models with only a small set of informative variables adds another layer of complexity. New statistical methods will be developed to surmount the challenges. The proposed methods lead to a statistical framework for integrating multiple types of proteomic and genomic data. A complete framework for such integration has not been developed and tested in the statistics and computational biology literature. The proposed method can produce innovative methodologies for analyzing very large amounts of heterogeneous data, suggest new lines of quantitative investigations in systems biology, and offer opportunities for students to participant in inter-disciplinary research.
新的统计和分析方法将被开发来研究组蛋白修饰在酿酒酵母中的调节作用。真核细胞中的基因活动受转录因子和染色质结构的共同调控。染色质的基本重复单位是核小体,核小体是一种八聚体,含有四种核心组蛋白的两个拷贝。启动子区域的核小体占据通常会阻断转录因子的结合,从而抑制整体基因表达,而组蛋白修饰的作用更为复杂。组蛋白尾部可以以各种方式修饰,包括乙酰化、甲基化、磷酸化和泛素化。即使是组蛋白乙酰化的调节作用,迄今为止最好的特征修饰,仍然没有完全理解。来自酿酒酵母的质谱和全基因组微阵列数据为研究人员评估组蛋白修饰的调节作用提供了新的机会。研究人员将开发统计学方法来识别组蛋白修饰的靶基因和组蛋白修饰的相关DNA序列特征。研究人员还将开发用于预测组蛋白修饰及其相互作用的计算和统计方法。实验数据的噪声和高维性使得许多传统的统计方法失效。如何仅用一小部分信息变量构建预测模型又增加了一层复杂性。将开发新的统计方法来克服这些挑战。 所提出的方法导致一个统计框架,整合多种类型的蛋白质组和基因组数据。在统计学和计算生物学文献中还没有开发和测试这种整合的完整框架。 所提出的方法可以产生创新的方法来分析非常大量的异质数据,建议在系统生物学定量调查的新路线,并为学生提供机会,参与跨学科的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Ma其他文献

Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus
中国太湖北端沉积物风险评估:化学分析和摇蚊慢性毒性测试相结合
Noninvasive imaging of hepatocyte IL-6/STAT3 signaling pathway for evaluating inflammation responses induced by end-stage stored whole blood transfusion
肝细胞IL-6/STAT3信号通路无创成像评估终末期储存全血输注引起的炎症反应
  • DOI:
    10.1007/s10529-019-02688-0
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhengjun Wang;Yulong Zhang;Qianqian Zhou;Ping Ma;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan
Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury
Kindlin-2 与 Rho GDP 解离抑制剂 α 的关联抑制 Rac1 激活和足细胞损伤
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Sun;Chen Guo;Ping Ma;Yumei Lai;Fan Yang;Jun Cai;Yi Deng;Guozhi Xiao;Chuanyue Wu
  • 通讯作者:
    Chuanyue Wu
Design of cold-formed thin-walled steel fixed-ended channels with complex edge stiffeners under axial compressive load by direct strength method
轴向压缩载荷下复杂边缘冷弯薄壁型钢固定端槽钢直接强度法设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chun Gang Wang;Ping Ma;Dai Jun Song;Xin Yong Yu
  • 通讯作者:
    Xin Yong Yu
Large-sized graphene oxide nanosheets increase DC–T cell synaptic contact and the efficacy of DC vaccines against SARS-CoV-2.
大尺寸氧化石墨烯纳米片可增加 DC-T 细胞突触接触以及 DC 疫苗针对 SARS-CoV-2 的功效。
  • DOI:
    10.1002/adma.202102528
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Qianqian Zhou;Hongjing Gu;Sujing Sun;Yulong Zhang;Yangyang Hou;Chenyan Li;Yan Zhao;Ping Ma;Liping Lv;Subi Aji;Shihui Sun;Xiaohui Wang;Linsheng Zhan
  • 通讯作者:
    Linsheng Zhan

Ping Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Ma', 18)}}的其他基金

Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
ATD: Quantum algorithms for spatiotemporal models with applications to threat detection
ATD:时空模型的量子算法及其在威胁检测中的应用
  • 批准号:
    2319279
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
ATD: Nonparametric Testing and Fast Computing Methods for Spatiotemporal Models with Applications to Threat Detection
ATD:时空模型的非参数测试和快速计算方法及其在威胁检测中的应用
  • 批准号:
    1925066
  • 财政年份:
    2019
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1440037
  • 财政年份:
    2013
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1438957
  • 财政年份:
    2013
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: ATD: Integrated statistical algorithms with ultra-high performance computing for discovering SNPs from massive next-generation metagenomic sequencing data
合作研究:ATD:将统计算法与超高性能计算相结合,用于从大量下一代宏基因组测序数据中发现 SNP
  • 批准号:
    1222718
  • 财政年份:
    2012
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant
CAREER: Subsampling Methods in Statistical Modeling of Ultra-Large Sample Geophysics
职业:超大样本地球物理统计建模中的子采样方法
  • 批准号:
    1055815
  • 财政年份:
    2011
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
CMG: Collaborative Research: Multi-Scale (Wave Equation) Tomographic Imaging with USArray Waveform Data
CMG:协作研究:使用 USArray 波形数据进行多尺度(波方程)断层成像
  • 批准号:
    0723759
  • 财政年份:
    2007
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Continuing Grant
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
Integration of experiments and biomolecular modeling through end-to-end differentiable approaches
通过端到端可微分方法整合实验和生物分子建模
  • 批准号:
    23H03412
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel Agent-based Approaches for UK Whole Energy Systems Modelling for UK Net-zero Emissions by 2050, with a Focus on Hydrogen Integration
英国整体能源系统建模的基于代理的新型方法,到 2050 年实现英国净零排放,重点关注氢整合
  • 批准号:
    2891033
  • 财政年份:
    2023
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Studentship
Multi-omic single-cell, electronic health record, and biomedical knowledge graph data integration using interpretable deep learning approaches
使用可解释的深度学习方法进行多组学单细胞、电子健康记录和生物医学知识图数据集成
  • 批准号:
    576153-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Alliance Grants
Integration and deepening of groundwater environmentology and coastal ecology: Application of new approaches for the breakthrough
地下水环境学与海岸带生态学的融合与深化:新方法的应用突破
  • 批准号:
    20KK0262
  • 财政年份:
    2022
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Exploring synergies between model-based systems engineering and current hydrogen modeling approaches to advance the integration of green hydrogen into existing energy systems
探索基于模型的系统工程和当前氢建模方法之间的协同作用,以推动绿色氢融入现有能源系统
  • 批准号:
    563136-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Alliance Grants
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速发现新型化学探针
  • 批准号:
    10398798
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Enabling the Accelerated Discovery of Novel Chemical Probes by Integration of Crystallographic, Computational, and Synthetic Chemistry Approaches
通过整合晶体学、计算和合成化学方法,加速新型化学探针的发现
  • 批准号:
    10613499
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
Neuronal integration across senses: Psychophysical and computational approaches to cue integration in injured brain
跨感官的神经元整合:在受伤大脑中提示整合的心理物理学和计算方法
  • 批准号:
    2607377
  • 财政年份:
    2021
  • 资助金额:
    $ 59.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了