Drawing Graphs with Low Visual Complexity
以较低的视觉复杂度绘制图表
基本信息
- 批准号:256873462
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we study a novel design criterion for drawings of planar graphs. A common goal in graph drawing is to create visualizations that can be easily captured by the viewer. This includes, that the drawings of the edges and the vertices are well-distinguishable. From a classical point of view the realizations of the edges and vertices form the ground set of geometric objects, whose combination defines the drawing. In this project we investigate how one can construct drawings assembled from a very small ground set. The crucial point in our idea is that a simple path in the graph can be realized as a single object of the ground set. In this sense, we can obtain a drawing that uses fewer objects than it has edges. The drawing is therefore an arrangement of simple geometric objects, whose skeleton gives the input graph. We refer to the size of the ground set as the visual complexity of the drawing. As geometric objects we consider straight-line segments and circular arcs. We focus on drawings of planar graphs and study as subclasses trees, series-parallel graphs, outerplanar graphs, planar 3-trees and triangulations.We plan to develop algorithms for generating drawings with low visual complexity. The constructed drawings should also fulfill other well-established design criteria. In order to evaluate the quality of the constructed drawings we also study the worst-case visual complexity for planar graphs with respect to the number of edges. From this question we can derive a number of interesting combinatorial question in the area of graph theory, which we would like to investigate in this project. We claim that drawings with low visual complexity are esthetically appealing. We plan to verify our claim by empirical user studies. Moreover, we want to test if drawings with low visual complexity have other desirable properties. Finally, we would like to study the relationship between contact representations of circular arcs and drawings of graphs with low visual complexity.
在这个项目中,我们研究了一种新的平面图的设计准则。图形绘制中的一个共同目标是创建可以容易地被查看器捕获的可视化。这包括,边和顶点的绘图是很好区分的。从经典的角度来看,边和顶点的实现形成了几何对象的基础集,其组合定义了绘图。在这个项目中,我们将研究如何从一个非常小的地面集合组装图纸。在我们的想法中的关键点是,图中的一个简单的路径可以实现为一个单一的对象的基集。从这个意义上说,我们可以得到一幅使用的对象比它的边缘少的图。因此,绘图是简单几何对象的排列,其骨架给出输入图形。我们将地面的大小称为绘图的视觉复杂度。作为几何对象,我们考虑直线段和圆弧。我们主要研究平面图的绘图,并将其作为树、串-平行图、外平面图、平面3-树和三角剖分的子类进行研究,并计划开发低视觉复杂度的绘图算法。施工图还应满足其他完善的设计标准。为了评估质量的构造图纸,我们还研究了最坏情况下的视觉复杂度平面图的边的数量。从这个问题中,我们可以得到一些有趣的组合问题,在该地区的图论,我们想在这个项目中进行调查。我们认为,低视觉复杂度的绘画在美学上具有吸引力。我们计划通过实证用户研究来验证我们的说法。此外,我们想测试低视觉复杂度的绘图是否具有其他理想的属性。最后,我们想研究圆弧的接触表示和低视觉复杂度的图形绘制之间的关系。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams
两个社区的故事:评估节点链接图中的同质性
- DOI:10.1007/978-3-319-27261-0_40
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:W. Meulemans;A. Schulz
- 通讯作者:A. Schulz
Drawing planar graphs with few segments on a polynomial grid
在多项式网格上绘制具有少量线段的平面图
- DOI:10.1007/978-3-030-35802-0_32
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:P. Kindermann;T. Mchedlidze;R. Prutkin;T. Schneck;A. Symvonis
- 通讯作者:A. Symvonis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. André Schulz其他文献
Professor Dr. André Schulz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. André Schulz', 18)}}的其他基金
Algorithmen zur Realisierung von Polytopen in 3D
3D 多面体实现算法
- 批准号:
219074381 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
ATD: Diffusion and Transport on Graphs: Active Learning, Low-Dimensional Representations, and Anomaly Detection
ATD:图上的扩散和传输:主动学习、低维表示和异常检测
- 批准号:
2318894 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Instantons, low dimensional topology and knotted graphs
瞬子、低维拓扑和打结图
- 批准号:
1406348 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Low complexity error control coding using graphs for high throughput cooperative wireless networks
使用图的低复杂度错误控制编码用于高吞吐量协作无线网络
- 批准号:
283342-2010 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low complexity error control coding using graphs for high throughput cooperative wireless networks
使用图的低复杂度错误控制编码用于高吞吐量协作无线网络
- 批准号:
283342-2010 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low complexity error control coding using graphs for high throughput cooperative wireless networks
使用图的低复杂度错误控制编码用于高吞吐量协作无线网络
- 批准号:
283342-2010 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low complexity error control coding using graphs for high throughput cooperative wireless networks
使用图的低复杂度错误控制编码用于高吞吐量协作无线网络
- 批准号:
283342-2010 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low complexity error control coding using graphs for high throughput cooperative wireless networks
使用图的低复杂度错误控制编码用于高吞吐量协作无线网络
- 批准号:
283342-2010 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Construction of Low-Complexity, Capacity-Achieving Code Families from Expander Graphs
从扩展图构建低复杂度、可实现容量的代码系列
- 批准号:
0310961 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Group actions on low dimensional manifolds, Hamiltonian cycles in Cayley graphs
低维流形上的群作用,凯莱图中的哈密顿循环
- 批准号:
7218-1997 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Group actions on low dimensional manifolds, Hamiltonian cycles in Cayley graphs
低维流形上的群作用,凯莱图中的哈密顿循环
- 批准号:
7218-1997 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual