Broadening the Use of Learning Analytics in STEM Education Research

扩大学习分析在 STEM 教育研究中的应用

基本信息

  • 批准号:
    2321128
  • 负责人:
  • 金额:
    $ 49.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Learning Analytics (LA) has emerged over the past 15 years as an interdisciplinary practice that applies computational methods from data science and artificial intelligence (AI) to better understand and improve student learning. However, professional development and training opportunities -- particularly for scholars from underrepresented groups -- have not kept pace with the growing demand for STEM education researchers prepared to use these methods. To address this issue, the Institute on Broadening the Use of Learning Analytics in STEM Education Research will provide participating scholars with ongoing training and support in using cutting-edge techniques for their STEM education research. The project team will also develop easy-to-use and adaptable curriculum materials that participants can use to provide training for faculty and students at their home institutions. All curriculum materials will be published on a freely-available website so that education researchers and practitioners everywhere can benefit, not just those directly involved in the program. The first year of the Institute will focus on creating a modular and adaptable curriculum composed of 25-30 instructional modules that can be assembled into learning opportunities ranging from short duration workshops or webinars to multiple distinct semester-long courses. Years 2 and 3 will focus on training two cohorts of STEM education researchers (50 participants in total) to learn from, and teach with, curriculum materials developed during Year 1. Each cohort will attend a 5-day, in-person summer training institute and participate in online workshops during the academic year focused on self-selected methods and topics (e.g., large language models, supervised machine learning, network analysis) relevant to participants’ research interests. In addition, the project team will provide participants with ongoing training and support to pilot instructional materials with faculty or students at their home institutions throughout the year. This project is supported through a partnership with the Bill & Melinda Gates Foundation, Schmidt Futures, and the Walton Family Foundation. This project is also supported by NSF's EDU Core Research Building Capacity in STEM Education Research (ECR: BCSER) program, which is designed to build investigators' capacity to carry out high-quality STEM education research in the core areas of STEM learning and learning environments, broadening participation in STEM fields, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
学习分析(LA)在过去的15年中已经成为一种跨学科的实践,应用数据科学和人工智能(AI)的计算方法来更好地理解和改善学生的学习。然而,专业发展和培训机会-特别是对于来自代表性不足群体的学者-没有跟上对准备使用这些方法的STEM教育研究人员日益增长的需求。为了解决这个问题,在STEM教育研究中扩大学习分析的使用研究所将为参与的学者提供持续的培训和支持,以使用尖端技术进行STEM教育研究。该项目小组还将开发易于使用和适应性强的课程材料,供参与者在本国机构为教师和学生提供培训。所有的课程材料都将在一个免费的网站上发布,以便世界各地的教育研究人员和实践者都能受益,而不仅仅是那些直接参与该计划的人。该研究所的第一年将专注于创建一个模块化和适应性强的课程,由25-30个教学模块组成,这些模块可以组装成从短期研讨会或网络研讨会到多个不同的学期课程的学习机会。第二年和第三年将重点培训两批STEM教育研究人员(共50名参与者),以学习和教授第一年开发的课程材料。每个队列将参加为期5天的暑期培训机构,并在学年期间参加在线研讨会,重点是自选方法和主题(例如,大型语言模型,监督机器学习,网络分析)与参与者的研究兴趣相关。此外,项目小组将为参与者提供持续培训和支持,以便全年在其所在机构与教师或学生一起试用教学材料。 这个项目是通过与比尔梅林达盖茨基金会,施密特期货,沃尔顿家族基金会的合作伙伴关系支持。该项目也得到了NSF的EDU核心研究STEM教育研究能力建设的支持(ECR:BCSER)计划,旨在培养研究人员在STEM学习和学习环境的核心领域开展高质量STEM教育研究的能力,扩大STEM领域的参与,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaun Kellogg其他文献

Credit Recovery in a Virtual School: Affordances of Online Learning for the At-Risk Student
虚拟学校的学分恢复:为高危学生提供在线学习的机会
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin M. Oliver;Shaun Kellogg
  • 通讯作者:
    Shaun Kellogg
A Survey of Elementary School Technology Needs: A Needs Assessment
小学技术需求调查:需求评估
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaun Kellogg
  • 通讯作者:
    Shaun Kellogg
Embracing learning analytics in health professions education
在健康专业教育中采用学习分析
Patterns of Peer Interaction and Mechanisms Governing Social Network Structure in Two Massively Open Online Courses for Educators.
  • DOI:
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaun Kellogg
  • 通讯作者:
    Shaun Kellogg

Shaun Kellogg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaun Kellogg', 18)}}的其他基金

Learning Analytics in STEM Education Research Institute
STEM 教育研究院的学习分析
  • 批准号:
    2025090
  • 财政年份:
    2020
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Standard Grant

相似海外基金

Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
  • 批准号:
    24K04111
  • 财政年份:
    2024
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Investment Accelerator
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
  • 批准号:
    2319619
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Continuing Grant
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
  • 批准号:
    486956
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Operating Grants
Effective use of ICT in writing for children with learning disabilities to achieve diversity of learning styles
在写作中有效利用信息通信技术帮助有学习障碍的儿童实现学习方式的多样性
  • 批准号:
    23KJ1576
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Engineering researchers' English learning and use: Teaching material development based on posthumanism
工程科研人员的英语学习与使用:基于后人文主义的教材开发
  • 批准号:
    23K00694
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
  • 批准号:
    10619943
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
The use and effectiveness of translanguaging in Content Language Integrated Learning: The study of learner psychology
跨语言在内容语言整合学习中的使用和有效性:学习者心理研究
  • 批准号:
    22KJ2926
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
  • 批准号:
    10838152
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
Use of deep learning and development of statistical prediction result evaluation methods for the acceleration of personalized medicine
利用深度学习和开发统计预测结果评估方法加速个性化医疗
  • 批准号:
    23K11014
  • 财政年份:
    2023
  • 资助金额:
    $ 49.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了