ATLAS: Assurance through layer-wise anomaly sensing
ATLAS:通过分层异常传感进行保证
基本信息
- 批准号:EP/X024288/1
- 负责人:
- 金额:$ 77.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We will develop technology for the real-time detection of defects in metal additive manufacturing processes. We envision a future where every part made will come with a digital copy of itself containing a 3D map of defects. This will enable manufacturers to accelerate certification and quality assurance of high-integrity parts through virtual testing and also provide online feedback for the rapid optimisation of process parameters. This project addresses multiple digital manufacturing research challenges across data analytics, real-time optimisation, virtual testing, and model verification.Additive manufacture (AM), also known as 3D printing, of metallic materials is transforming manufacturing supply chains across the energy, transport, healthcare, and defence sectors. It stimulates design innovation and through lighter, better performing and more reliable products, it can help us meet our future net zero and sustainability goals. However, use of AM parts in safety critical industries is limited by concerns around material property consistency. These concerns present a considerable challenge for quality assurance, slowing further adoption of AM processes and constraining much needed innovation. We aim to solve this challenge using in-process sensing, where cameras and other sensor types observe the manufacturing process in real-time, in combination with data-driven machine learning models to predict when defects occur. To do this we will design and build part geometries representative of common industrial designs and collect in-processing monitoring data across several sensor modalities (i.e. co-axial melt pool imaging, surface temperature, melt track morphology sensor systems) from our unique in-process monitoring platform. The parts will then be micro-CT scanned post-build to establish porosity truth data, creating a suite of pristine, spatially registered, data sets. The builds will cover various industrially relevant manufacturing parameters and common machine issues such as dirty lens, clogged filter, contaminated powder, worn wiper blade, etc. These data sets will be used for the training and validation of data-driven machine learning models to predict part porosity. Robust non-destructive evaluation methodologies will be used to characterise model performance. We will then implement online layer-wise feedback to dynamically adjust processing parameters and repair defects through selective remelting. This approach will address fundamental challenges in model robustness, data reduction, real-time processing, optimisation, and feedback.Ultimately, this project will enhance metal additive manufacturing part quality and enable accelerated virtual certification. Combined, these outputs will reduce the risk involved in developing innovative new products, removing a significant barrier to the widespread adoption of metal additive manufacturing technology.
我们将开发实时检测金属增材制造工艺中缺陷的技术。我们设想的未来是,每一个零件都将带有一个数字副本,其中包含一个3D缺陷图。这将使制造商能够通过虚拟测试加速高完整性部件的认证和质量保证,并为快速优化工艺参数提供在线反馈。该项目解决了数据分析、实时优化、虚拟测试和模型验证等多个数字制造研究挑战。金属材料的增材制造(AM),也称为3D打印,正在改变能源、运输、医疗保健和国防部门的制造供应链。它刺激设计创新,并通过更轻,性能更好,更可靠的产品,它可以帮助我们实现未来的净零排放和可持续发展目标。然而,增材制造零件在安全关键行业中的使用受到材料性能一致性问题的限制。这些问题对质量保证提出了相当大的挑战,减缓了AM流程的进一步采用,并限制了急需的创新。我们的目标是使用过程中传感来解决这一挑战,其中相机和其他传感器类型实时观察制造过程,并结合数据驱动的机器学习模型来预测缺陷何时发生。为此,我们将设计和构建代表常见工业设计的零件几何形状,并从我们独特的过程中监测平台收集多个传感器模式(即同轴熔池成像、表面温度、熔体轨迹形态传感器系统)的过程中监测数据。然后,这些部件将在构建后进行微CT扫描,以建立孔隙率真实数据,从而创建一套原始的、空间配准的数据集。这些构建将涵盖各种工业相关的制造参数和常见的机器问题,如脏透镜、堵塞的过滤器、受污染的粉末、磨损的雨刮片等。这些数据集将用于训练和验证数据驱动的机器学习模型,以预测零件孔隙率。将使用稳健的非破坏性评价方法来验证模型性能。然后,我们将实施在线逐层反馈,以动态调整工艺参数,并通过选择性重熔修复缺陷。该方法将解决模型鲁棒性、数据简化、实时处理、优化和反馈方面的基本挑战。最终,该项目将提高金属增材制造零件质量,并实现加速虚拟认证。这些产出将降低开发创新新产品的风险,消除广泛采用金属增材制造技术的重大障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Hooper其他文献
Quality Assurance in the UK Agro-food Industry: A Sector-driven Response to Addressing Environmental Risk
- DOI:
10.1057/palgrave.rm.8240164 - 发表时间:
2003-10-01 - 期刊:
- 影响因子:1.700
- 作者:
Laura Venn;Paul Hooper;Mark Stubbs;Craig Young - 通讯作者:
Craig Young
A new approach to modeling social institutions using artificial neural networks
使用人工神经网络对社会机构进行建模的新方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
S. Angus;A. Bell;Paul Hooper;E. Mullane - 通讯作者:
E. Mullane
Spontaneous hemothorax after caesarian section: an unusual manifestation of diaphragmatic fenestrations.
剖腹产后自发性血胸:膈肌开窗的异常表现。
- DOI:
10.1016/j.athoracsur.2004.04.095 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
P. Vaughan;Paul Hooper;J. Duffy - 通讯作者:
J. Duffy
Assessment and management of pelvic organ prolapse
盆腔器官脱垂的评估和治疗
- DOI:
10.1016/j.curobgyn.2005.09.002 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Vimplis;Paul Hooper - 通讯作者:
Paul Hooper
The challenge of liberalising domestic airline competition in a less developed country
- DOI:
10.1007/bf00223063 - 发表时间:
1996-11-01 - 期刊:
- 影响因子:3.300
- 作者:
Paul Hooper;Simon Hutcheson;Michael Nyathi - 通讯作者:
Michael Nyathi
Paul Hooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Hooper', 18)}}的其他基金
Doctoral Dissertation Research: Prosocial Reputation Dynamics in Social Networks
博士论文研究:社交网络中的亲社会声誉动态
- 批准号:
1528939 - 财政年份:2015
- 资助金额:
$ 77.54万 - 项目类别:
Standard Grant
相似海外基金
CAREER: SAIF: Security Assurance through AI and Formal Approaches for System-on-Chips
职业:SAIF:通过人工智能和片上系统的正式方法提供安全保证
- 批准号:
2339971 - 财政年份:2024
- 资助金额:
$ 77.54万 - 项目类别:
Continuing Grant
Enhancing AI Assurance through Comprehensive Compliance, Risk Management, and Explainability Solutions
通过全面的合规性、风险管理和可解释性解决方案增强人工智能保障
- 批准号:
10075846 - 财政年份:2023
- 资助金额:
$ 77.54万 - 项目类别:
Grant for R&D
aiAuditSense+:Redefining AI Assurance for Financial Sectors through Tailored GEIT Solutions for Impact Assessment and Enhanced Reliability
aiAuditSense:通过定制的 GEIT 解决方案进行影响评估和增强可靠性,重新定义金融部门的人工智能保证
- 批准号:
10072863 - 财政年份:2023
- 资助金额:
$ 77.54万 - 项目类别:
Grant for R&D
Advances in energy harvesting and flow assurance through extreme high-pressure rheology
通过极高压流变学在能量收集和流量保证方面取得进展
- 批准号:
573721-2022 - 财政年份:2022
- 资助金额:
$ 77.54万 - 项目类别:
University Undergraduate Student Research Awards
Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
- 批准号:
10256613 - 财政年份:2021
- 资助金额:
$ 77.54万 - 项目类别:
Enabling remote medical physics services for medical accelerator quality assurance through a novel, table-top imaging device
通过新颖的桌面成像设备实现远程医学物理服务,以保证医疗加速器的质量
- 批准号:
10773360 - 财政年份:2021
- 资助金额:
$ 77.54万 - 项目类别:
Advances in energy harvesting and flow assurance through extreme high-pressure rheology
通过极高压流变学在能量收集和流量保证方面取得进展
- 批准号:
552145-2020 - 财政年份:2020
- 资助金额:
$ 77.54万 - 项目类别:
University Undergraduate Student Research Awards
Advances in energy harvesting and flow assurance through extreme high-pressure rheology
通过极高压流变学在能量收集和流量保证方面取得进展
- 批准号:
538781-2019 - 财政年份:2019
- 资助金额:
$ 77.54万 - 项目类别:
University Undergraduate Student Research Awards
Research on effect of University through Re-Certification of Teacher Training Curriculums -Quality Assurance and University Autonomy
教师培训课程再认证对大学的影响研究——质量保证与大学自治
- 批准号:
19K02490 - 财政年份:2019
- 资助金额:
$ 77.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
5*StarS: Automotive Cyber Security through Assurance
5*StarS:通过保证实现汽车网络安全
- 批准号:
103284 - 财政年份:2017
- 资助金额:
$ 77.54万 - 项目类别:
Collaborative R&D














{{item.name}}会员




