EAGER: Multiphase Flow and Heat Transfer for isothermal Compressed Air Energy Storage
EAGER:等温压缩空气储能的多相流和传热
基本信息
- 批准号:2324460
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Increasing renewable energy in the nation’s power grid is leading to rapid growth in wind energy. However, intermittency issues (the wind doesn't always blow) is a critical challenge. Development of economical, long-duration, utility-scale storage is important for our nation and world. While compressed air energy storage allows these utility-scale long-duration aspects, key challenges remain in terms of efficiency. To solve these, a fundamental understanding of the controlling parameters and physics for isothermal compression and expansion efficiency at high pressure ratios is needed. The proposed research project will enable isothermal compressed air energy storage by identifying the key parameters and thermo-fluid physics that control round-trip efficiencies relevant to full-scale systems. The disseminated findings can be used to direct development of this technology for effective long-duration wind energy storage, which can ensure a resilient and deeply decarbonized US power grid that enhances our nation's energy security and independence. In addition, this project supports graduate student research in renewable energy while fostering diversity and inclusion.The goal of this project is to identify and characterize the primary underpinning multiphase flow and heat transfer factors that control efficient isothermal compressed air energy storage. In particular, the proposed work will employ an optically accessible experimental setup for both compression and expansion that allows pressure ratios of up to 50:1 to identify relevant multiphase flow and heat transfer physics. In addition, this one-year highly focused experimental effort will characterize isothermal round-trip efficiency in terms of the key non-dimensional parameters. The project aims, for the first time, to: 1) experimentally test the hypothesis that the newly developed Crowe number and heat exchanger mass loading are the primary non-dimensional numbers that characterize isothermal efficiency, 2) experimentally demonstrate that high round-trip storage efficiency can be achieved at high pressure ratios (ca. 50:1), and 3) identify the key multiphase flow and heat transfer physics that are critical to efficacy of this type of energy storage. This new research can be transformative for isothermal compressed air energy storage technology development, which can help solve the wind energy intermittency issues in order to allow the nation to achieve a deeply decarbonized grid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国家电网中可再生能源的增加导致风能的快速增长。 然而,不稳定性问题(风并不总是吹)是一个关键的挑战。 发展经济、长效、大规模的储气库对我国乃至世界都具有重要意义。 虽然压缩空气储能可以实现这些公用事业规模的长时间方面,但在效率方面仍然存在关键挑战。 为了解决这些问题,需要对高压比下等温压缩和膨胀效率的控制参数和物理特性有基本的了解。 拟议的研究项目将通过确定控制与全尺寸系统相关的往返效率的关键参数和热流体物理学来实现等温压缩空气储能。 这些研究结果可用于指导这项技术的开发,以实现有效的长期风能储存,从而确保美国电网的弹性和深度脱碳,增强我们国家的能源安全和独立性。 此外,该项目还支持研究生在可再生能源方面的研究,同时促进多样性和包容性。该项目的目标是确定和表征控制高效等温压缩空气储能的主要基础多相流和传热因素。特别是,拟议的工作将采用光学可访问的实验装置,用于压缩和膨胀,允许高达50:1的压力比,以确定相关的多相流和传热物理。 此外,这一为期一年的高度集中的实验工作将表征等温往返效率的关键无量纲参数。 该项目的目的是,第一次,以:1)实验测试的假设,新开发的克罗数和热交换器的质量负载是主要的无量纲数,表征等温效率,2)实验证明,高往返存储效率可以实现在高压比(约。50:1),以及3)识别对这种类型的能量存储的功效至关重要的关键多相流和热传递物理。 这项新的研究可以为等温压缩空气储能技术的发展带来变革,这可以帮助解决风能的不稳定性问题,从而使国家实现深度脱碳的电网。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Loth其他文献
Gravo-aeroelastically-scaled demonstrator field tests to represent blade response of a flexible extreme-scale downwind turbine
- DOI:
10.1016/j.renene.2023.119217 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Meghan Kaminski;Juliet Simpson;Eric Loth;Lee Jay Fingersh;Andy Scholbrock;Nick Johnson;Kathryn Johnson;Lucy Pao;Todd Griffith - 通讯作者:
Todd Griffith
Wind energy value and deep decarbonization design, what’s next?
- DOI:
10.1016/j.nxener.2023.100059 - 发表时间:
2023-12 - 期刊:
- 影响因子:0
- 作者:
Eric Loth - 通讯作者:
Eric Loth
Experimental characterization of an axisymmetric-sector inertial particle separator wind tunnel
轴对称扇形惯性粒子分离器风洞的实验特性
- DOI:
10.1016/j.ast.2025.110281 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:5.800
- 作者:
Cesar R. Rodriguez-Saenz;Eric Loth - 通讯作者:
Eric Loth
Offshore wind energy storage concept for cost-of-rated-power savings
- DOI:
10.1016/j.apenergy.2017.04.077 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Chao Qin;Gordon Saunders;Eric Loth - 通讯作者:
Eric Loth
Aerodynamic rotor design for a 25 MW offshore downwind turbine
- DOI:
10.1016/j.apenergy.2023.122035 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Michael Jeong;Eric Loth;Chris Qin;Michael Selig;Nick Johnson - 通讯作者:
Nick Johnson
Eric Loth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Loth', 18)}}的其他基金
Planning Grant: Engineering Research Center for Wind Integrated with Storage for Energy Resilience (WISER)
规划资助:风电与储能相结合的能源弹性工程研究中心(WISER)
- 批准号:
1937039 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I-Corps: Ultra-lubricating and Hemocompatible Nanocomposite Coatings for Surgical Devices
I-Corps:用于手术器械的超润滑和血液相容性纳米复合涂层
- 批准号:
1217196 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Active Excitement of Three- Dimensional Layers
研究启动奖:三维层的主动激发
- 批准号:
9010594 - 财政年份:1990
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Effect of biofilm formation on multiphase flow and wetting properties during cyclic injection of hydrogen in rocks
岩石循环注氢过程中生物膜形成对多相流和润湿特性的影响
- 批准号:
2901554 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Studentship
CAREER: Design Principles of Deformable and Adhesive Particles in Multiphase Flow through Microchannels
职业:微通道多相流中可变形和粘附颗粒的设计原理
- 批准号:
2339972 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Integrated Multiphase Blood Flow Modeling and Experiments Towards Predicting Microvascular Growth
集成多相血流建模和实验来预测微血管生长
- 批准号:
2309559 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Multiphase Flow Optimisation Strategies with Industrial Applications (MFLOPS)
工业应用的多相流优化策略 (MFLOPS)
- 批准号:
EP/X041387/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2318107 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
4D Tomographic Particle Image Velocimetry for Multiphase Flow Measurement
用于多相流测量的 4D 断层粒子图像测速
- 批准号:
LE230100167 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Moment Methods for Multiphase Flow and Non-Equilibrium Gasdynamics
多相流和非平衡气体动力学的矩量法
- 批准号:
RGPIN-2020-06295 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Experimental and Numerical Investigation of Multiphase (Solid-Liquid-Gas) Flow: Application to Respiratory Drug Delivery
多相(固-液-气)流的实验和数值研究:在呼吸药物输送中的应用
- 批准号:
RGPIN-2022-05055 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Multiphase Circumgalactic Gas Flow and the Growth of the Galactic Disk
多相环银河系气流与银盘的生长
- 批准号:
2202328 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Fellowship Award