CAREER: Scaling Electrolytes to a Single Monolayer for Low-Power Ion-Gated Electronics with Unconventional Characteristics

职业:将电解质缩放为单层,用于具有非常规特性的低功耗离子门控电子产品

基本信息

  • 批准号:
    1847808
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The continuous miniaturization of electronics over the past sixty years has yielded devices that are less power hungry; however, due to physical constraints, the geometric scaling approach is nearing an end. New materials and engineering approaches are needed to push electronics towards lower power and higher information density. One such material is the two-dimensional (2D) semiconductor, a sheet-like material that is only a single molecule thick. Ions - like those used in rechargeable lithium-ion batteries - can be used to control the amount of charge passing through the 2D material to make the operating process more power efficient. This CAREER research reimagines the role of ions in electronics by developing a completely new type of electrolyte to induce charge in the 2D material. Similar to the 2D semiconductor, this electrolyte is also a single molecule thick, and adds new functionalities, such as information storage. The CAREER project explores this new material for application spaces including logic, memory, security and brain-inspired computing. The postdoctoral scholar, graduate and undergraduate students who work on this research benefit from an interdisciplinary project combining soft matter and electronics with the goal of engineering next generation electronics. The research component provides educational examples to be used in the classroom and in outreach efforts to middle and high school students. For example, to inspire curiosity and exploration, a microscope that attaches to the camera of a smart phone will be used by the students to inspect the electrolytes used in this research.While the era of geometric device scaling of high-performance electronics is coming to an end, two-dimensional (2D) materials are being explored for their exciting new physics that can impart novel functionalities in application spaces such as information storage, neuromorphic computing, and hardware security. To develop next-generation electronics based on these materials, charges must be reconfigurable and well controlled. Electric double layer (EDL) gating using ions can provide both ultra-high carrier densities and doping that can be reconfigured between p- and n-type in 2D semiconductors. However, conventional electrolytes are not considered an integral and practical component for future electronic devices because their physical properties (e.g., liquid phase, micron-thick, thermally unstable) are incompatible with the materials and processing of integrated circuits. This CAREER project scales a solid-state electrolyte to the single molecule limit for use in non-volatile, low-power, multi-bit information storage. The intellectual merit comprises materials innovations that include the demonstration of a novel class of electrolyte and the use of this electrolyte to store information. Electrolyte scaling will introduce functionality that can be used by the electronic materials community to explore the fundamental properties of 2D semiconductors and to develop electronics with new device characteristics. The broader impacts are (1) the translation of EDL gating from a measurement tool for exploring transport in 2D crystals to an active device component that enables completely new functionalities, and (2) student training at the intersection of physical chemistry, device physics, and engineering. Outreach activities focused on polymer crystallization will inspire meaningful engagement and independent exploration that increases understanding for middle and high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的60年里,电子产品的不断小型化已经产生了更少耗电的设备;然而,由于物理限制,几何缩放方法已接近尾声。需要新的材料和工程方法来推动电子产品朝着低功耗和高信息密度的方向发展。其中一种材料是二维(2D)半导体,一种只有单个分子厚度的片状材料。离子——就像可充电锂离子电池中使用的离子——可以用来控制通过二维材料的电荷量,从而使操作过程更节能。这项CAREER研究通过开发一种全新的电解质来诱导二维材料中的电荷,重新想象了离子在电子器件中的作用。与二维半导体类似,这种电解质也是单分子厚度,并增加了新的功能,如信息存储。CAREER项目探索这种新材料的应用空间,包括逻辑、记忆、安全和大脑启发计算。从事这项研究的博士后学者、研究生和本科生将受益于一个跨学科项目,该项目将软物质和电子学结合起来,目标是设计下一代电子学。研究部分提供了在课堂上使用的教育实例,并在初高中学生的推广工作中使用。例如,为了激发好奇心和探索精神,学生们将使用连接在智能手机摄像头上的显微镜来检查本研究中使用的电解质。当高性能电子产品的几何器件缩放时代即将结束时,二维(2D)材料正在探索其令人兴奋的新物理特性,可以在信息存储,神经形态计算和硬件安全等应用空间中赋予新功能。为了开发基于这些材料的下一代电子产品,电荷必须是可重新配置和良好控制的。使用离子的双电层(EDL)门控可以提供超高载流子密度和掺杂,可以在二维半导体中在p型和n型之间重新配置。然而,传统的电解质并不被认为是未来电子设备不可或缺的实用组件,因为它们的物理性质(例如,液相,微米厚,热不稳定)与集成电路的材料和加工不相容。这个CAREER项目将固态电解质扩展到单分子极限,用于非易失性、低功耗、多比特信息存储。知识价值包括材料创新,包括新型电解质的演示和使用该电解质来存储信息。电解液缩放将引入功能,可用于电子材料界探索二维半导体的基本特性,并开发具有新器件特性的电子产品。更广泛的影响是:(1)EDL门控从用于探索二维晶体输运的测量工具转变为能够实现全新功能的有源器件组件,以及(2)物理化学,器件物理和工程交叉的学生培训。以聚合物结晶为重点的拓展活动将激发有意义的参与和独立探索,从而增加初高中学生的理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Fullerton其他文献

Susan Fullerton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Fullerton', 18)}}的其他基金

A Personalized Learning Model for STEM Graduate Education
STEM 研究生教育的个性化学习模式
  • 批准号:
    2325599
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Field-Controlled Ion-Locked Polymorphic Electronics for Hardware Security
用于硬件安全的场控离子锁定多态电子器件
  • 批准号:
    2132006
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
A New Approach to Explore the Semiconductor-to-Metal Phase Transition in Two-Dimensional Crystals Using Ionomers
使用离聚物探索二维晶体中半导体到金属相变的新方法
  • 批准号:
    1607935
  • 财政年份:
    2016
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
GOALI: A low-voltage nonvolatile single transistor flash memory device based on ion transport in 2D electrolytes
GOALI:基于二维电解质中离子传输的低压非易失性单晶体管闪存器件
  • 批准号:
    1631717
  • 财政年份:
    2015
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
GOALI: A low-voltage nonvolatile single transistor flash memory device based on ion transport in 2D electrolytes
GOALI:基于二维电解质中离子传输的低压非易失性单晶体管闪存器件
  • 批准号:
    1408425
  • 财政年份:
    2014
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant

相似海外基金

Scaling a Digital Treasure Hunt Game
扩展数字寻宝游戏
  • 批准号:
    ES/Y01104X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
  • 批准号:
    EP/Z53304X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Fellowship
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
  • 批准号:
    ES/Z502807/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
Beyond experiments: scaling transformative, sustainable business models in the UK
超越实验:在英国扩展变革性、可持续的商业模式
  • 批准号:
    MR/X035786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Fellowship
Study on mitigation of gypsum scaling during membrane distillation operation
膜蒸馏运行过程中石膏结垢缓解研究
  • 批准号:
    24K17543
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Oxygen vacancy engineering on indium oxide vertical FETs for 3D power scaling
用于 3D 功率缩放的氧化铟垂直 FET 上的氧空位工程
  • 批准号:
    24K17328
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了