Rank-Metric in Coding Theory and Machine Learning

编码理论和机器学习中的排名度量

基本信息

项目摘要

Two different communities - information theory and machine learning - have recently started to investigate the mathematical problem of finding the matrix of minimal rank in an affine space. They have done so for completely different reasons and have proposed very different approaches. In machine learning, rank has been identified as an extremely useful regularization parameter for otherwise ill-posed inverse problems. In the past four years, dozens of applications of thelow-rank recovery problem have been identified. They range from image processing, over robust recovery of signals from quadratic measurements, to the prediction of user preferences in online shops from incomplete data. Independently, researchers working on coding theory have realized that errors that naturally occur in certain network coding scenarios are of low rank when represented as suitable matrices. The decoding problem is formally equivalent to thelow-rank recovery one of machine learning. (This is analogous to the relation between compressed sensing and Hamming-metric decoding, that has been fruitfully exploited in the past). Despite the close resemblance between the two tasks, almost no transfer of concepts and methods between the two communities has taken place so far. This project - uniting two groups with expertise in, respectively, coding and low-rank recovery - aims to amend this situation.
两个不同的团体-信息论和机器学习-最近开始研究在仿射空间中找到最小秩矩阵的数学问题。他们这样做是出于完全不同的原因,并提出了非常不同的方法。在机器学习中,秩被认为是一个非常有用的正则化参数,用于解决不适定的逆问题。在过去的四年中,几十个应用thelow-rank恢复问题已被确定。它们的范围从图像处理,从二次测量信号的鲁棒恢复,到从不完整数据预测在线商店的用户偏好。 独立地,研究编码理论的研究人员已经意识到,在某些网络编码场景中自然发生的错误在表示为合适的矩阵时是低秩的。解码问题在形式上等价于机器学习中的低秩恢复问题。(This类似于压缩感测和汉明度量解码之间的关系,这在过去已经被富有成效地利用)。尽管这两项任务非常相似,但迄今为止,两个社区之间几乎没有任何概念和方法的转移。这个项目联合了两个分别在编码和低秩恢复方面有专长的小组,旨在改变这种情况。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Popov Form Computation for Matrices of Ore Polynomials
矿石多项式矩阵的波波夫形式计算
Sub-quadratic decoding of Gabidulin codes
An alternative decoding method for Gabidulin codes in characteristic zero
特征零加比杜林码的一种替代解码方法
Reed–Solomon Codes over Fields of Characteristic Zero
特征零域上的 ReedâSolomon 编码
Fast Operations on Linearized Polynomials and their Applications in Coding Theory
  • DOI:
    10.1016/j.jsc.2017.11.012
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Puchinger;A. Wachter-Zeh
  • 通讯作者:
    S. Puchinger;A. Wachter-Zeh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Martin Bossert其他文献

Professor Dr.-Ing. Martin Bossert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Martin Bossert', 18)}}的其他基金

Complex-valued Reed-Solomon Codes for Deterministic Compressed Sensing
用于确定性压缩感知的复值 Reed-Solomon 码
  • 批准号:
    273209895
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Decoding Interleaved Gabidulin Codes by Module Minimization
通过模块最小化解码交错加比杜林代码
  • 批准号:
    261867389
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
coordinations project
协调项目
  • 批准号:
    252239977
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Improving the Reliability of RNA-seq: Approaching Single-Cell Transcriptomics to Explore Individuality in Bacteria
提高 RNA-seq 的可靠性:利用单细胞转录组学探索细菌的个体性
  • 批准号:
    251441183
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Decoding in weighted combinatorial and other metrics
以加权组合和其他指标进行解码
  • 批准号:
    216040227
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Methoden der Kanalcodierung für Compressed Sensing
压缩感知的信道编码方法
  • 批准号:
    190474113
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Finding new overlapping genes and their theory
寻找新的重叠基因及其理论
  • 批准号:
    150058393
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coding techniques for transmitting packets through complex communication networks
通过复杂通信网络传输数据包的编码技术
  • 批准号:
    140552950
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Interrelations between Channel Coding and Precoding in Transmission Strategies for Broadcast Channels and in Network Coding
广播信道传输策略和网络编码中信道编码和预编码之间的相互关系
  • 批准号:
    140514937
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Decodierung algebraischer Codes über die halbe Mindestdistanz und Listencodierung
解码超过一半最小距离的代数码和列表编码
  • 批准号:
    142255864
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects

相似海外基金

CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
  • 批准号:
    2338424
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A systemic environmental impact metric for companies and investors
公司和投资者的系统性环境影响指标
  • 批准号:
    DP230101280
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
  • 批准号:
    24K16999
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MRI: Track 3 Acquisition of a Helium Liquefaction and Recovery System for METRIC NMR Laboratories at NC State
MRI:轨道 3 为北卡罗来纳州 METRIC NMR 实验室采购氦液化和回收系统
  • 批准号:
    2320092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310412
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Secure Research Impact Metric Data Exchange: Data Supply Chain and Vocabulary Development
EAGER:安全研究影响指标数据交换:数据供应链和词汇开发
  • 批准号:
    2335827
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
  • 批准号:
    2305397
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
  • 批准号:
    2311035
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了