FW-HTF-RL/Collaborative Research: Elevating Farm Worker-Robot Collaborations in Agri-Food Ecosystems
FW-HTF-RL/协作研究:提升农业食品生态系统中的农场工人与机器人协作
基本信息
- 批准号:2326310
- 负责人:
- 金额:$ 61.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Future of Work at the Human-Technology Frontier - Research: Large (FW-HTF-RL) project advances the agricultural workforce and automation technology partnership in the context of future precision farming for fresh fruit tree-crop harvesting (that is, picking and handling fruits that are meant to be sold in a store). The overarching goal of this project is to shape the future farm workplace in which human-aware agricultural robots operate in a seamless partnership with farmworkers to improve future tree-crop harvesting outcomes while improving the job experience and enhancing the productivity of food production processes. Not all tasks in fresh fruit tree-crop harvesting can be automated, and some tasks might be better offloaded to a future robotic co-worker when doing so would augment farmworker efficiency and improve the quality of work. The project brings together experts from Engineering, Computer Science, Social Science, Environmental Science, and Crop Production Management to discover these new agricultural robotics and farmworker interactions. The team aims to create scientific and technological foundations of future agricultural robotics and automation technology developed for and validated by future farmworkers and farm owners. This human worker validation will increase trust and adoption toward future precision farming and understand the implications of this technology’s integration in future agriculture workforce relations. The project investigates the deployment of pervasive, intelligent, and autonomous agricultural robotics at the frontier of the farming workforce and agricultural robotics and automation technology by creating new, expanded, and unique user-centered frameworks. The project uniquely innovates along five fundamental agricultural robotics and automation technology and agricultural workforce research directions. 1) Novel principles to co-design actuation and perception for safe, reliable, and efficient robotic harvesters. 2) Effective machine vision mechanisms to understand farmworker activities in harvesting. 3) Efficient robot planning techniques cognizant of human activities. 4) Participatory design approach for precision farming technology trust and adoption. 5) Advancement of human-robot multitasking toward sustainable agriculture. The project actively engages stakeholders (farmworkers, farm owners, packing house specialists) to assess current standards and practices and then integrate feedback after in-field demonstrations to inform iterative modifications of devices and systems. Taken together, these research directions will help extend human-robot collaboration with multitasking, explicitly exploring the trade-offs between harvesting efficiency and sustainable precision farming while shedding light on the yet-to-be-explored implications of future agriculture robotics technology on future agriculture workforce, notably as it may disrupt current compensation schemes in relation to technology ownership which in turn can further affect the degree of adoption and trust in automation. The rich set of engaging problems will provide abundant research opportunities for a diverse cohort of undergraduate students. The project integrates existing efforts in K-12 outreach events hosted at the project’s three collaborating sites – University of California (UC) Riverside, UC Merced, and UC Davis – to broaden the participation of under-represented minority groups.This project has been funded by the Future of Work at the Human-Technology Frontier cross-directorate program to promote a deeper fundamental understanding of the interdependent human-technology partnership in work contexts by advancing the design of intelligent work technologies that operate in harmony with human workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项人类技术前沿工作的未来-研究:大型(FW-HTF-RL)项目在未来精准农业的背景下推进了农业劳动力和自动化技术伙伴关系,以收获新鲜水果作物(即采摘和处理打算在商店出售的水果)。该项目的总体目标是塑造未来的农场工作场所,其中人类感知的农业机器人与农场工人无缝合作,以改善未来的树木作物收获结果,同时改善工作经验,提高食品生产过程的生产力。并非所有收获新鲜水果作物的任务都可以自动化,有些任务可能会更好地交给未来的机器人同事,因为这样做可以提高农场工人的效率和工作质量。该项目汇集了来自工程、计算机科学、社会科学、环境科学和作物生产管理的专家,以发现这些新的农业机器人和农场工人的互动。该团队旨在为未来的农业机器人和自动化技术创造科学和技术基础,这些技术是为未来的农场工人和农场主开发和验证的。这种人工验证将增加对未来精准农业的信任和采用,并理解该技术在未来农业劳动力关系中的整合意义。该项目通过创建新的、扩展的、独特的以用户为中心的框架,在农业劳动力、农业机器人和自动化技术的前沿研究普及、智能和自主农业机器人的部署。该项目沿着农业机器人与自动化五大基础技术和农业劳动力研究方向进行独特创新。1)为安全、可靠、高效的机器人收割机共同设计驱动和感知的新原理。2)有效的机器视觉机制,以了解农场工人在收获过程中的活动。3)识别人类活动的高效机器人规划技术。4)精准农业技术信任与采用的参与式设计方法。5)面向可持续农业的人机多任务研究进展。该项目积极吸引利益相关者(农场工人、农场所有者、包装专家)评估当前的标准和实践,然后在现场演示后整合反馈,为设备和系统的迭代修改提供信息。总的来说,这些研究方向将有助于扩展人机多任务协作,明确探索收获效率和可持续精准农业之间的权衡,同时揭示未来农业机器人技术对未来农业劳动力的尚未探索的影响。值得注意的是,它可能会破坏当前与技术所有权相关的补偿方案,这反过来又会进一步影响自动化的采用程度和信任程度。丰富的一套引人入胜的问题将提供丰富的研究机会,为不同的本科生队列。该项目整合了在三个合作地点(加州大学河滨分校、加州大学默塞德分校和加州大学戴维斯分校)举办的K-12外展活动的现有努力,以扩大代表性不足的少数群体的参与。该项目由人类-技术前沿跨部门计划的未来工作资助,旨在通过推进与人类工人和谐运作的智能工作技术的设计,促进对工作环境中相互依赖的人类-技术伙伴关系的更深层次的基本理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Harmon其他文献
Impact of T-ACASI on Survey Measurements of Subjective Phenomena.
T-ACASI 对主观现象调查测量的影响。
- DOI:
10.1093/poq/nfp020 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
Thomas Harmon;C. Turner;S. M. Rogers;E. Eggleston;A. Roman;M. Villarroel;J. Chromy;L. Ganapathi;Sheping Li - 通讯作者:
Sheping Li
Thomas Harmon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Harmon', 18)}}的其他基金
RAPID: Collaborative Research: ENSO and Tropical Rain Forest Soil Carbon (CH4, CO2) Fluxes
RAPID:合作研究:ENSO 和热带雨林土壤碳(CH4、CO2)通量
- 批准号:
1624658 - 财政年份:2016
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Proposal - Quantifying the footprint of a dominant organism: Biogeochemical impacts of leaf cutter ants in a lowland tropical forest ecosystem
合作提案 - 量化优势生物的足迹:低地热带森林生态系统中切叶蚁的生物地球化学影响
- 批准号:
1442568 - 财政年份:2014
- 资助金额:
$ 61.06万 - 项目类别:
Continuing Grant
SAVI: Climate Change, Human Adaptation and Risks to Sustainable Freshwater Ecosystems in the Western Hemisphere and Beyond
SAVI:西半球及其他地区的气候变化、人类适应和可持续淡水生态系统的风险
- 批准号:
1336839 - 财政年份:2013
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
WSC Category 3: Propogating Climate-Driven Changes in Hydrologic Processes and Ecosystem Functions across Extreme Biophysical and Anthropogenic Gradients
WSC 第 3 类:在极端生物物理和人为梯度范围内传播气候驱动的水文过程和生态系统功能变化
- 批准号:
1204841 - 财政年份:2012
- 资助金额:
$ 61.06万 - 项目类别:
Continuing Grant
WATERS Network: Observing and Predicting Freshwater Eutrophication-Algal Bloom Dynamics Using Local Hyperspectral Imaging
WATERS Network:利用局部高光谱成像观测和预测淡水富营养化-藻华动态
- 批准号:
0854566 - 财政年份:2009
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
PASI: Pan-American Sensors for Environmental Observatories - An Interdisciplinary PASI; Bahia Blanca, Argentina, January 2009
PASI:泛美环境观测站传感器 - 跨学科 PASI;
- 批准号:
0819276 - 财政年份:2008
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
U.S.-Argentina Program Development Workshop: Pan American Sensors for Environmental Observatories (PASEO) Workshop; Bahia Blanca Argentina, June 26-29, 2007.
美国-阿根廷项目开发研讨会:泛美环境观测站传感器 (PASEO) 研讨会;
- 批准号:
0735084 - 财政年份:2007
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative SGER: Investigation of Spatial and Temporal Patterns in the Concentrations of Redox-Active Chemical Species at a USGS NAWQA Cycle II Site
协作 SGER:调查 USGS NAWQA Cycle II 站点氧化还原活性化学物质浓度的时空模式
- 批准号:
0408264 - 财政年份:2004
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
CLEANER: Planning a Multiscale Sensor Network to Observe, Forecast and Manage
CLEANER:规划用于观测、预测和管理的多尺度传感器网络
- 批准号:
0414300 - 财政年份:2004
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Design Models for Confined Concrete Columns
约束混凝土柱的设计模型
- 批准号:
9700012 - 财政年份:1997
- 资助金额:
$ 61.06万 - 项目类别:
Continuing Grant
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
- 批准号:
2326270 - 财政年份:2024
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326187 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326194 - 财政年份:2023
- 资助金额:
$ 61.06万 - 项目类别:
Standard Grant