Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
基本信息
- 批准号:2327731
- 负责人:
- 金额:$ 25.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stomata, which are microscopic pores on the surfaces of plants, are gateways that control photosynthesis in the crops that provide humanity with food and sustainable materials. This project investigates how stomata in grasses, which include staple food crops such as maize and wheat, are constructed with the capability to rapidly open and close to regulate photosynthesis and water transport in response to changing environmental conditions. The project will provide interdisciplinary graduate training and support discovery-based undergraduate research courses in molecular genetics, plant cell biology, computer vision, and biomechanics experimentation and modeling, expanding participation in these fields for diverse early-career scientists. The exciting biology of stomatal dynamics in plants and how understanding and engineering stomata can help address pressing societal challenges such as food security and climate change will be shared with K-12 students through a middle school summer camp and mentoring of high school students who will design and complete independent research projects. The outcomes of this work promise to help improve the efficiency with which plants capture carbon dioxide and convert it into food and useful materials such as fibers and wood.The four-celled stomatal complexes of grasses have been hypothesized to function via a “see-saw” mechanism by which the expansion of dumbbell-shaped guard cells is matched by deflation of the round subsidiary cells that flank the guard cells, enabling rapid adjustment of the size of the stomatal pore in response to environmental shifts. However, this hypothesis has not been rigorously tested, and our understanding of stomatal biomechanics and function in grasses is limited. This project combines molecular genetics, cell biology, computer vision, mechanical testing, and computer modeling of stomatal biomechanics to dissect the molecular, physiological, and cellular underpinnings of rapid stomatal dynamics in a model grass species, Brachypodium distachyon. The composition of the cell walls in guard and subsidiary cells will be manipulated in Brachypodium distachyon through advanced genetic engineering. The resulting changes will be examined with respect to stomatal function, biomechanical properties of the modified plants will be measured and modeled, and computer vision pipelines will be used to quantify changes in cell volumes and shapes. With these approaches, experimentally testable computational models of normal and altered stomatal complexes will help predict how stomatal function might be further optimized to enhance crop yields, water use efficiency, and carbon drawdown.This project is jointly funded by the NSF/BIO/MCB Cell Dynamics & Function Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气孔是植物表面的微观孔隙,是控制作物光合作用的门户,为人类提供食物和可持续材料。 该项目研究了禾本科植物(包括玉米和小麦等主食作物)中的气孔是如何构建的,能够快速打开和关闭,以调节光合作用和水分运输,以应对不断变化的环境条件。 该项目将提供跨学科的研究生培训,并支持分子遗传学,植物细胞生物学,计算机视觉和生物力学实验和建模方面的基于发现的本科研究课程,扩大不同早期职业科学家在这些领域的参与。 植物气孔动力学的令人兴奋的生物学,以及理解和工程气孔如何帮助解决紧迫的社会挑战,如粮食安全和气候变化,将通过中学夏令营和指导高中学生谁将设计和完成独立的研究项目与K-12学生分享。 这项工作的结果有望帮助提高植物捕获二氧化碳并将其转化为食物和有用材料(如纤维和木材)的效率。草的四细胞气孔复合体被假设通过“跷跷板”机制发挥作用,即哑铃形保卫细胞的扩张与保卫细胞两侧的圆形附属细胞的收缩相匹配,能够响应环境变化快速调整气孔的大小。 然而,这一假设尚未得到严格的检验,我们对气孔生物力学和功能的理解是有限的。 该项目结合了分子遗传学,细胞生物学,计算机视觉,机械测试和气孔生物力学的计算机建模,以剖析模式草种二穗短柄草(Brachypodium distachyon)快速气孔动态的分子,生理和细胞基础。 通过先进的基因工程技术对二穗短柄草保卫细胞和附属细胞的细胞壁组成进行调控。 由此产生的变化将在气孔功能方面进行检查,修改后的植物的生物力学特性将被测量和建模,计算机视觉管道将用于量化细胞体积和形状的变化。 通过这些方法,实验可测试的计算模型的正常和改变气孔复合体将有助于预测气孔功能如何可能进一步优化,以提高作物产量,水分利用效率,和碳dulling.This项目是由NSF/BIO/MCB细胞动力学&功能计划和既定计划刺激竞争力研究(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah Petrik其他文献
Deborah Petrik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 25.21万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 25.21万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
- 批准号:
2321625 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327732 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
- 批准号:
2321624 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
- 批准号:
2246050 - 财政年份:2023
- 资助金额:
$ 25.21万 - 项目类别:
Standard Grant