Active antiferromagnetic materials for hosting hybrid magnonic functionalities
用于承载混合磁波函数的活性反铁磁材料
基本信息
- 批准号:2328787
- 负责人:
- 金额:$ 39.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionAntiferromagnets are a class of materials with microscopic magnetic dipole moments that align in the opposite direction of their neighbors. They possess dynamic modes that emerge from microscopic oscillations at frequencies ranging from billions (GHz) to trillions (THz) of cycles per second. This is important for emerging technologies based on THz devices for communications, computing and sensing. Whereas permanent magnets can be magnetized through a magnetic field, antiferromagnets are highly resistant to external control. This makes it difficult to manipulate their magnetic properties and develop new technologies based on these materials. To advance technologies based on antiferromagnets, the research team will synthesize structures designed to effectively excite and manipulate their dynamic properties. The materials focus will be on antiferromagnetic oxides of iron (Fe2O3), chromium (Cr2O3), and nickel (NiO). The team will engineer interactions between the oscillating modes within thin film structures composed of antiferromagnets and other materials. The PI seeks to broaden participation in STEM by involving female undergraduate and graduate students in the laboratory. The PI will also organize seminars and round table discussions where women speakers from industry, with relevant technical backgrounds, engage with the students in both formal and informal settings. The objective is to develop and support a network that empowers women to achieve their career aspirations and provides a broader perspective on how their technical skills can contribute to the STEM workforce.Technical DescriptionWithin antiferromagnetic materials and metamaterials, magnons exist across a wide range of frequencies, spanning from tens of GHz to THz. However, practical methods to robustly manipulate and excite the antiferromagnetic magnon spectrum at the sub-THz or THz level have yet to be demonstrated. This is primarily due to the insensitivity of antiferromagnetic order to external fields. The functionalization of these ultrafast magnetic excitations holds significant potential for unlocking next-generation THz electronics and ultrafast magnetic memory technologies that are currently nonexistent. The team's approach to functionalize antiferromagnetic magnons combines motifs from spintronics with emerging concepts in hybrid quantum magnonics. Specifically, magnon-magnon interactions between various acoustic and optical modes are leveraged to exert control over the magnon energy spectrum. In this project, sputter deposition techniques are employed to synthesize heterostructures that either emulate antiferromagnets or incorporate bulk antiferromagnets into the overall structure. The heterostructures resembling antiferromagnets are akin to synthetic antiferromagnets, comprising multiple ferromagnetic films coupled together by a non-magnetic spacer material. The total number of magnetic layers and the choice of spacer layer materials in a given structure are key factors in exciting magnons and generating magnon-magnon interactions. By synthesizing heterostructures based on bulk antiferromagnets, the team relies on interactions between spatially uniform antiferromagnetic magnons and short-wavelength ferromagnetic magnons to control the energy level spectrum in the sub-THz and THz regime. Conventional ferromagnetic resonance spectroscopy, spin-torque ferromagnetic resonance spectroscopy, and frequency-domain THz spectroscopy techniques are employed for the characterization of these samples.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述反铁磁体是一类具有微观磁偶极矩的材料,其排列方向与相邻材料相反。它们具有动态模式,这些模式是从频率范围从每秒数十亿(GHz)到数万亿(THz)周期的微观振荡中出现的。这对于基于太赫兹设备的通信、计算和传感新兴技术非常重要。虽然永磁体可以通过磁场磁化,但反铁磁体对外部控制具有很强的抵抗力。这使得很难操纵它们的磁性,并开发基于这些材料的新技术。为了推进基于反铁磁体的技术,研究小组将合成旨在有效激发和操纵其动态特性的结构。材料的重点将是铁(Fe 2 O3),铬(Cr2 O3)和镍(NiO)的反铁磁氧化物。该团队将设计由反铁磁体和其他材料组成的薄膜结构内振荡模式之间的相互作用。PI寻求通过让女本科生和研究生参与实验室来扩大对STEM的参与。PI还将组织研讨会和圆桌讨论会,来自行业的具有相关技术背景的女性演讲者将在正式和非正式场合与学生接触。其目标是发展和支持一个网络,使妇女能够实现其职业抱负,并提供更广阔的视角,了解她们的技术技能如何为STEM劳动力做出贡献。技术说明在反铁磁材料和超材料中,磁振子存在于从几十GHz到THz的广泛频率范围内。然而,在亚太赫兹或太赫兹水平上鲁棒地操纵和激发反铁磁振子谱的实用方法尚未得到证实。这主要是由于反铁磁序对外场的不敏感性。这些超快磁激发的功能化具有解锁下一代THz电子和超快磁存储器技术的巨大潜力,这些技术目前尚不存在。该团队的反铁磁磁磁振子功能化方法将自旋电子学的图案与混合量子磁振子中的新兴概念相结合。具体而言,利用各种声学和光学模式之间的磁振子-磁振子相互作用来控制磁振子能谱。在这个项目中,溅射沉积技术被用来合成异质结构,无论是模仿反铁磁体或将散装反铁磁体到整体结构。类似于反铁磁体的异质结构类似于合成反铁磁体,包括通过非磁性间隔材料耦合在一起的多个铁磁膜。在给定的结构中,磁性层的总数和间隔层材料的选择是激发磁振子和产生磁振子-磁振子相互作用的关键因素。通过合成基于体反铁磁体的异质结构,该团队依靠空间均匀的反铁磁振子和短波长铁磁振子之间的相互作用来控制亚太赫兹和太赫兹区域的能级谱。传统的铁磁共振光谱,自旋扭矩铁磁共振光谱,和频域太赫兹光谱技术被用于表征这些samples.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Sklenar其他文献
Optical Detection of Phase-Resolved Ferromagnetic Resonance in Epitaxial FeCo Thin Films
外延 FeCo 薄膜中相分辨铁磁共振的光学检测
- DOI:
10.1109/tmag.2019.2893819 - 发表时间:
2019-02 - 期刊:
- 影响因子:2.1
- 作者:
Yi Li;Fanlong Zeng;Hilal Saglam;Joseph Sklenar;John E.Pearson;Thomas Sebastian;Yizheng Wu;Axel Hoffmann;Wei Zhang - 通讯作者:
Wei Zhang
Probing magnon–magnon coupling in exchange coupled Y $$_3$$ Fe $$_5$$ O $$_{12}$$ /Permalloy bilayers with magneto-optical effects
用磁光效应探测交换耦合 Y$_3$Fe$_5$O$_{12}$/坡莫合金双层膜中的磁振子-磁振子耦合
- DOI:
10.1038/s41598-020-69364-6 - 发表时间:
2020-07-28 - 期刊:
- 影响因子:3.900
- 作者:
Yuzan Xiong;Yi Li;Mouhamad Hammami;Rao Bidthanapally;Joseph Sklenar;Xufeng Zhang;Hongwei Qu;Gopalan Srinivasan;John Pearson;Axel Hoffmann;Valentine Novosad;Wei Zhang - 通讯作者:
Wei Zhang
Joseph Sklenar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials
基于硅兼容反铁磁材料的可扩展三端子存储器件
- 批准号:
2203243 - 财政年份:2022
- 资助金额:
$ 39.52万 - 项目类别:
Standard Grant
Harnessing Quantum Materials to design Antiferromagnetic Topological Textures
利用量子材料设计反铁磁拓扑纹理
- 批准号:
EP/X024938/1 - 财政年份:2022
- 资助金额:
$ 39.52万 - 项目类别:
Fellowship
MBE-Sputtering-system for antiferromagnetic spintronic materials
用于反铁磁自旋电子材料的 MBE 溅射系统
- 批准号:
504979810 - 财政年份:2022
- 资助金额:
$ 39.52万 - 项目类别:
Major Research Instrumentation
Exploring new antiferromagnetic spintronics materials by first-principles calculation
通过第一性原理计算探索新型反铁磁自旋电子学材料
- 批准号:
20K05299 - 财政年份:2020
- 资助金额:
$ 39.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fabrication of tunnel junction devices using antiferromagnetic materials for the realization of ultra-high-density memories
使用反铁磁材料制造隧道结器件以实现超高密度存储器
- 批准号:
20K04569 - 财政年份:2020
- 资助金额:
$ 39.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Antiferromagnetic materials for spintronics
用于自旋电子学的反铁磁材料
- 批准号:
2809338 - 财政年份:2019
- 资助金额:
$ 39.52万 - 项目类别:
Studentship
Fabrication of spin trque devices by using quasi-antiferromagnetic materials
利用准反铁磁材料制造自旋扭矩器件
- 批准号:
19K04471 - 财政年份:2019
- 资助金额:
$ 39.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineered antiferromagnetic materials for terahertz magnon-polaritons
用于太赫兹磁振子的工程反铁磁材料
- 批准号:
1810163 - 财政年份:2018
- 资助金额:
$ 39.52万 - 项目类别:
Standard Grant
Synthesis and characterization of half-metallic antiferromagnetic materials by atomic-layer control
原子层控制半金属反铁磁材料的合成与表征
- 批准号:
25790054 - 财政年份:2013
- 资助金额:
$ 39.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of High Performance Exchange Bias Materials by Analyzing and Controlling Interfacial Induced Uncompensated Antiferromagnetic Spins
通过分析和控制界面引起的未补偿反铁磁自旋开发高性能交换偏置材料
- 批准号:
20360133 - 财政年份:2008
- 资助金额:
$ 39.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)