Scalable Three Terminal Memory Devices based on Silicon-Compatible Antiferromagnetic Materials

基于硅兼容反铁磁材料的可扩展三端子存储器件

基本信息

  • 批准号:
    2203243
  • 负责人:
  • 金额:
    $ 35.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Antiferromagnetic materials are magnetically ordered materials without a net macroscopic magnetization. They offer characteristics that make them promising for high-density, fast, and low-power nonvolatile memory devices: Firstly, there is no inter-bit dipole interaction between neighboring bits, making it possible to place adjacent bits closer together than with ferromagnetic devices. Secondly, antiferromagnets can potentially have ultrafast write times in the picosecond range, due to their exchange-dominated dynamics. Thirdly, devices based on these materials would be immune to tampering by magnetic fields, making them more secure than ferromagnet-based devices. However, to date, the realization of these devices has been hindered by the difficulty of electrically interacting with antiferromagnetic materials, particularly in industry-relevant materials and at nanoscale dimensions. This project aims to develop three-terminal antiferromagnetic memory devices with full electrical read and write capability, based on silicon-compatible antiferromagnetic materials that can be integrated in existing semiconductor manufacturing processes. This project will have a significant economic impact by enabling magnetic memories to address broader markets than currently possible, including dynamic random-access memory and embedded static random-access memory. In addition to its economic impact, this project will achieve broader impact through the incorporation of significant outreach and education activities. This includes outreach to the broader public through performance arts (science-themed plays and film screenings) through the Engineering Transdisciplinary Outreach Project in the Arts at Northwestern University. Research results will also be integrated into a newly developed course that the PI is teaching at Northwestern University, which focuses on the fundamentals and applications of magnetism and spintronics.The intellectual merit of this proposal is in the device design, modeling, fabrication, and electrical characterization of three-terminal nonvolatile memory devices. The devices will be primarily based on noncollinear conductive antiferromagnetic materials that can be sputter-deposited on silicon substrates (e.g., SnMn3, GaMn3, IrMn3 and related compounds). The magnetic state will be controlled electrically via current-induced spin-orbit torque from an adjacent heavy metal. The project aims to demonstrate scaling of this device operation down to industry-relevant bit diameters. The project will also integrate the electrical write mechanism with electrical readout via a tunneling magnetoresistance structure, translating the Néel vector modification into an electrical resistance change. The separation of read and write paths allows for higher cycling endurance and separate optimization of material parameters for the read and write steps. Thermal budgets, statistical variations induced by device variability, and other effects of the fabrication process on device characteristics will be investigated. The developed memory devices will be fully characterized to compare their performance to existing ferromagnet-based memory devices in terms of write time, write energy, write error rates (i.e., switching probability), read disturb rates, and cycling endurance. The device-level tradeoffs (e.g., between speed and endurance) will be characterized and compared to other existing and emerging memory technologies. Modeling will be performed both at the micromagnetic level to aid in device design, and at the physics-based compact model level, to allow for implementation into circuit design environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
反铁磁材料是磁性有序的材料,没有净宏观磁化。它们提供的特性使它们有望用于高密度、快速和低功耗的非易失性存储设备:首先,相邻位之间没有位间偶极子相互作用,使得相邻位可以比铁磁器件更紧密地放在一起。其次,由于它们的交换主导动力学,反铁磁体可能具有在皮秒范围内的超快写入时间。第三,基于这些材料的设备将不受磁场的干扰,使它们比基于铁磁的设备更安全。然而,到目前为止,这些器件的实现一直受到与反铁磁材料电相互作用的困难的阻碍,特别是在工业相关材料和纳米尺度上。该项目旨在开发具有全电读写能力的三端反铁磁存储器件,该器件基于硅兼容的反铁磁材料,可集成到现有的半导体制造工艺中。该项目将通过使磁存储器能够解决比目前可能的更广泛的市场,包括动态随机存取存储器和嵌入式静态随机存取存储器,从而产生重大的经济影响。除了经济影响外,该项目还将通过纳入重要的外联和教育活动而产生更广泛的影响。这包括通过西北大学的工程跨学科艺术推广项目,通过表演艺术(科学主题的戏剧和电影放映)向更广泛的公众推广。研究成果也将整合到PI在西北大学教授的一门新开发的课程中,该课程侧重于磁学和自旋电子学的基础和应用。本提案的智慧价值在于三端非易失性储存装置的装置设计、建模、制造和电特性。该器件将主要基于非共线导电反铁磁材料,可以溅射沉积在硅衬底上(例如,SnMn3, GaMn3, IrMn3和相关化合物)。磁性状态将通过电流感应自旋轨道转矩从邻近的重金属电控制。该项目旨在证明该设备的操作规模可以缩小到与行业相关的钻头直径。该项目还将通过隧道磁电阻结构集成电写入机制和电读出机制,将nsamel矢量的修改转化为电阻的变化。读取和写入路径的分离允许更高的循环耐久性和单独优化材料参数的读取和写入步骤。热预算,由器件变异性引起的统计变化,以及制造工艺对器件特性的其他影响将被研究。开发的存储器件将在写入时间、写入能量、写入错误率(即开关概率)、读取干扰率和循环耐久性等方面与现有的基于铁磁的存储器件进行性能比较。器件级的权衡(例如,在速度和耐用性之间)将被描述,并与其他现有和新兴的存储技术进行比较。建模将在微磁水平上进行,以帮助器件设计,并在基于物理的紧凑模型水平上进行,以允许在电路设计环境中实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perspectives on field-free spin–orbit torque devices for memory and computing applications
  • DOI:
    10.1063/5.0135185
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
  • 通讯作者:
    V. Lopez-Dominguez;Yixin Shao;P. Khalili Amiri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedram Khalili Amiri其他文献

Magneto-ionic Control of Ferrimagnetic Order by Oxygen Gating
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xueqiang Feng;Zhenyi Zheng;Yue Zhang;Zhizhong Zhang;Yixin Shao;Yu He;Xiaohan Sun;Lei Chen;Kun Zhang;Pedram Khalili Amiri;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao
A 65-nm ReRAM-Enabled Nonvolatile Processor With Time-Space Domain Adaption and Self-Write-Termination Achieving > 4x Faster Clock Frequency and > 6x Higher Restore Speed
具有时空域适应和自写终止功能的 65 nm ReRAM 非易失性处理器,可实现 > 4 倍更快的时钟频率和 > 6 倍更高的恢复速度
  • DOI:
    10.1109/jssc.2017.2724024
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zhibo Wang;Yongpan Liu;Albert Lee;Fang Su;Chieh-Pu Lo;Zhe Yuan;Jinyang Li;Chien-Chen Lin;Wei-Hao Chen;Hsiao-Yun Chiu;Wei-En Lin;Ya-Chin King;Chrong-Jung Lin;Pedram Khalili Amiri;Kang-Lung Wang;Meng-Fan Chang;Huazhong Yang
  • 通讯作者:
    Huazhong Yang
Large voltage-controlled magnetic anisotropy in the SrTiO3/Fe/Cu structure
SrTiO3/Fe/Cu 结构中的大电压控制磁各向异性
  • DOI:
    10.1063/1.4996275
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Shouzhong Peng;Sai Li;Wang Kang;Jiaqi Zhou;Na Lei;Youguang Zhang;Hongxin Yang;Xiang Li;Pedram Khalili Amiri;Kang L. Wang;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao
Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems
交换偏置系统中自旋轨道扭矩对无场磁化开关的焦耳热效应
  • DOI:
    10.1103/physrevapplied.7.024023
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Seyed Armin Razavi;Di Wu;Guoqiang Yu;Yong-Chang Lau;Kin L. Wong;Weihua Zhu;Congli He;Zongzhi Zhang;J. M. D. Coey;Plamen Stamenov;Pedram Khalili Amiri;Kang L. Wang
  • 通讯作者:
    Kang L. Wang
Enhanced broadband RF detection in nanoscale magnetic tunnel junction by interface engineering
通过界面工程增强纳米级磁隧道结的宽带射频检测
  • DOI:
    10.1021/acsami.9b06706
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Like Zhang;Bin Fang;Jialin Cai;Weican Wu;Baoshun Zhang;Bochong Wang;Pedram Khalili Amiri;Giovanni Finocchio;Zhongming Zeng
  • 通讯作者:
    Zhongming Zeng

Pedram Khalili Amiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedram Khalili Amiri', 18)}}的其他基金

FET: Small: CMOS+X: Integration of CMOS and voltage-controlled magnetic tunnel junctions for probabilistic computing
FET:小型:CMOS X:集成 CMOS 和压控磁隧道结,用于概率计算
  • 批准号:
    2322572
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311296
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
Spintronic Spectrum Analyzer and Limiter based on Tunable Magnetic Tunnel Junction Arrays
基于可调谐磁隧道结阵列的自旋电子频谱分析仪和限制器
  • 批准号:
    2203242
  • 财政年份:
    2022
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Ultrafast and Energy-efficient Anti-ferromagnetic Electric-field-controlled Memory Devices
超快且节能的反铁磁电场控制存储器件
  • 批准号:
    1853879
  • 财政年份:
    2019
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
PFI-RP: Partnership to develop next-generation memory chips for intelligent computing systems.
PFI-RP:合作开发用于智能计算系统的下一代存储芯片。
  • 批准号:
    1919109
  • 财政年份:
    2019
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
SBIR Phase I: Electric-Field-Controlled Nonvolatile Magnetic Memory Devices
SBIR 第一阶段:电场控制的非易失性磁存储器件
  • 批准号:
    1314951
  • 财政年份:
    2013
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant

相似海外基金

FuSe-TG: Physical Computing Co-Design using Three-terminal Devices
FuSe-TG:使用三端设备的物理计算协同设计
  • 批准号:
    2235316
  • 财政年份:
    2023
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Standard Grant
Three-terminal quantum dot solar cells with intermediate electrodes
具有中间电极的三端量子点太阳能电池
  • 批准号:
    20H02852
  • 财政年份:
    2020
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Capturing Biological Behavior in Three-Terminal Magnetic Tunnel Junction Synapses and Neurons for Fully Spintronic Neuromorphic Computing
职业:捕捉三端磁隧道连接突触和神经元的生物行为,以实现全自旋电子神经形态计算
  • 批准号:
    1940788
  • 财政年份:
    2020
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
E2CDA: Type II: Memory, Logic, and Logic in Memory Using Three Terminal Magnetic Tunnel Junctions
E2CDA:类型 II:使用三端子磁性隧道结的存储器、逻辑和存储器中的逻辑
  • 批准号:
    1639921
  • 财政年份:
    2016
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
Study on a new spin-orbit torque induced magnetization switching scheme and its application to three-terminal memory devices
一种新的自旋轨道力矩感应磁化切换方案及其在三端存储器件中的应用研究
  • 批准号:
    15K13964
  • 财政年份:
    2015
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Exploring of new semimetallic half-metals for three terminal devices
三终端器件新型半金属半金属的探索
  • 批准号:
    25600070
  • 财政年份:
    2013
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Evaluation of Superconducting Junctions with Magnetic Point and Fundamental Study for Three Terminal Devices
磁点超导结评估及三端器件基础研究
  • 批准号:
    21560372
  • 财政年份:
    2009
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERA NANOSCI: Three-terminal transport through single-molecule magnets
ERA NANOSCI:通过单分子磁体进行三端运输
  • 批准号:
    40465500
  • 财政年份:
    2007
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Research Grants
Spin based three terminal device using magnetic semiconductor/non-magnetic semiconductor hybrid structures
使用磁性半导体/非磁性半导体混合结构的基于自旋的三端器件
  • 批准号:
    18206001
  • 财政年份:
    2006
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Spin-electronic Dynamics in Three Terminal Couples Quantum Structures
合作研究:三端耦合量子结构中的自旋电子动力学
  • 批准号:
    0223817
  • 财政年份:
    2002
  • 资助金额:
    $ 35.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了