Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources

协作研究:学习电网边缘资源的安全可靠运行

基本信息

项目摘要

This NSF project aims to address the challenges and opportunities presented by the rapid proliferation of Grid Edge Resources (GERs) in modern power systems. Examples include distributed generators and smart inverters, smart thermostatically controlled loads, electric vehicles, and battery energy storage systems. Since GERs operate beyond traditional utility network boundaries and are controlled by customers, they introduce variable levels of controllability, observability, and vulnerability to cyber-attacks. The project will bring transformative change to the field of power system management through the development of a new analytical foundation and data-driven control methodologies to ensure the safe and secure operation of GERs. The intellectual merits of the project include the development of novel algorithmically robust data-driven control strategies that can withstand the unavoidable cyber vulnerabilities of GERs, and the advancement of our understanding of GER behavior and its impact on power system dynamics. The broader impacts of the project include enhancing the safety and security of the nation's critical energy infrastructure, improving the reliability of artificial intelligence and data-driven control methods across various safety-critical engineering systems, and promoting diversity and inclusion in two minority-serving institutions.The technical objectives of this project will be achieved by introducing a novel combination of model-based and data-driven control methods to guarantee that GERs are operated without violating power distribution systems’ constraints, despite the lack of direct control and validation capabilities in managing GERs in real-world power systems. Our approach ensures network-safe exploration and data-driven control at any stage of operation, despite model uncertainty. To address the challenge of unavoidable corrupt inputs from GERs, such as corruption in sensed load, we will develop grid edge control algorithms that are algorithmically robust to vulnerabilities in GERs. The proposed methods and results will be tested under realistic scenarios, considering diverse characteristics of various GREs, and under different network operating conditions and constraints, using real-world GER data and industry-standard computer simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在应对现代电力系统中电网边缘资源(GERS)迅速激增带来的挑战和机遇。例如分布式发电机和智能逆变器、智能恒温控制负载、电动汽车和电池储能系统。由于GER在传统公用事业网络边界之外运行,并由客户控制,因此它们引入了不同程度的可控性、可观察性和网络攻击脆弱性。该项目将通过开发新的分析基础和数据驱动的控制方法,为电力系统管理领域带来革命性的变化,以确保GERS的安全和可靠运行。该项目的学术价值包括开发了新的算法健壮的数据驱动控制策略,可以抵御GERS不可避免的网络漏洞,以及促进了我们对GER行为及其对电力系统动态影响的理解。该项目的更广泛影响包括增强国家关键能源基础设施的安全和安保,提高各种安全关键工程系统中人工智能和数据驱动控制方法的可靠性,以及促进两个少数群体服务机构的多样性和包容性。该项目的技术目标将通过引入基于模型和数据驱动的控制方法的新组合来实现,以确保GERS在不违反配电系统约束的情况下运行,尽管在现实世界的电力系统中管理GERS缺乏直接控制和验证能力。我们的方法可确保在运营的任何阶段进行网络安全探索和数据驱动控制,尽管模型存在不确定性。为了解决来自GERS的不可避免的损坏输入的挑战,例如感知负载的损坏,我们将开发在算法上对GERS中的漏洞具有健壮性的网格边缘控制算法。建议的方法和结果将在现实场景中进行测试,考虑到各种GRE的不同特点,并使用真实世界的GER数据和行业标准的计算机模拟,在不同的网络运营条件和约束下进行测试。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir-Hamed Mohsenian-Rad其他文献

Amir-Hamed Mohsenian-Rad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir-Hamed Mohsenian-Rad', 18)}}的其他基金

RAPID/Collaborative Research: Linking Household and Infrastructure Data to Understand the Impacts of Winter Storm Uri in Texas
快速/协作研究:将家庭和基础设施数据联系起来,了解德克萨斯州冬季风暴乌里的影响
  • 批准号:
    2141203
  • 财政年份:
    2021
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Understanding the Complex Impact of Convergence Bids on Wholesale Electricity Markets: Current and Future Implications
了解融合投标对批发电力市场的复杂影响:当前和未来的影响
  • 批准号:
    1711944
  • 财政年份:
    2017
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: A Hierarchical Approach to Dynamic Big Data Analysis in Power Infrastructure Security
EAGER-DynamicData:电力基础设施安全动态大数据分析的分层方法
  • 批准号:
    1462530
  • 财政年份:
    2015
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Approach to Quantifying Market Power in the Future Grid
协作研究:量化未来电网市场力量的统一方法
  • 批准号:
    1307756
  • 财政年份:
    2013
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
CSR: Small:Collaborative Research: Data Center Demand Response: Coordinating the Cloud and the Smart Grid
CSR:小型:协作研究:数据中心需求响应:协调云和智能电网
  • 批准号:
    1319798
  • 财政年份:
    2013
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
CAREER: Self-Organizing Demand Side Management for Smart Grid: A Dynamic Game-Theoretic Framework
职业:智能电网的自组织需求侧管理:动态博弈论框架
  • 批准号:
    1149735
  • 财政年份:
    2012
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
CAREER: Self-Organizing Demand Side Management for Smart Grid: A Dynamic Game-Theoretic Framework
职业:智能电网的自组织需求侧管理:动态博弈论框架
  • 批准号:
    1253516
  • 财政年份:
    2012
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 14.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了