EMMA - Efficient Methods for Mechanical Analysis
EMMA - 机械分析的有效方法
基本信息
- 批准号:257987586
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Independent Junior Research Groups
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Applications in classical engineering discplines or in modern domains such as medical engineering require accurate simulations of complex technological problems. In order to obtain the required precision, elaborate simulation models are necessary. In general, these models consider geometrical and/or material nonlinearities. Simulations of these problems involve high computational costs (CPU time, memory requirement). Further, they imply a high energy consumption.The aim of the Emmy Noether Junior Research Group EMMA (Efficient Methods for Mechanical Analysis) is the development of novel methods for computationally efficient simulations of nonlinear mechanical and multi-field problems. The computational efficiency is achieved by using reduced basis model order reduction (RB-MOR) techniques. In order to accelerate the general RB-MOR ansatz, the physical nature of the underlying fields is analyzed in detail. Then the reduced basis framework is designed such that mechanical considerations can help to significantly accelerate the solution of the reduced form of the transient, nonlinear problem. This is a noteworthy difference to other model reduction strategies such as classical Galerkin subspace projection methods. Another important difference to existing model reduction methods for differential equations is the application to nonlinear optimization problems.Although model reduction can already be effective and ready for application for few realistic problems, its field of application is rather limited today. The investigations of the EMMA group will enable a wide application of high performance model reduction techniques in academia, applied science and, possibly, in industrial applications. The development of a virtual laboratory synthesizing the research results in order to demonstrate the capabilities of modern model reduction strategies is a major objective of EMMA. The massive computational savings can render simulations feasible that are impossible today. Thereby, challenging studies, e.g. in mechanical or medical engineering and in computational materials science, can be realized in the future. Besides the pure reduction of the computing time, the reduced models lead to a major improvement of the energy efficiency. Therefore, ecological importance is attributed to these developments.The EMMA group pursues an interdisciplinary approach, which is exemplified by the integration of methods from computer science, e.g., via GPU acceleration or data mining methods. The special synthesis of mathematics, physics and model reduction allows for computational gains that are unparalleled by existing model reduction algorithms. The activities of EMMA allow for many subsequent scientific and industrial applications and deliver the potential for future research projects.
在经典工程学科或现代领域(如医学工程)中的应用需要对复杂的技术问题进行精确的模拟。为了获得所需的精度,精心设计的仿真模型是必要的。通常,这些模型考虑几何和/或材料非线性。这些问题的模拟涉及高计算成本(CPU时间,内存需求)。Emmy Noether Junior Research Group EMMA(Efficient Methods for Mechanical Analysis)的目标是开发新的方法,用于非线性力学和多场问题的高效计算模拟。计算效率是通过使用减少基模型降阶(RB-MOR)技术实现的。为了加快一般RB-MOR方法的计算速度,本文详细地分析了基本场的物理性质。然后,减少的基础框架的设计,使机械的考虑,可以帮助显着加速的瞬态,非线性问题的简化形式的解决方案。这是一个值得注意的区别,其他模型的减少战略,如经典的Galerkin子空间投影方法。与现有的微分方程模型降阶方法的另一个重要区别是其在非线性优化问题中的应用,尽管模型降阶方法已经可以有效地应用于少数实际问题,但其应用领域目前还相当有限。EMMA小组的研究将使高性能模型简化技术在学术界、应用科学以及可能的工业应用中得到广泛应用。EMMA的一个主要目标是开发一个虚拟实验室,综合研究结果,以展示现代模型简化策略的能力。大量的计算节省可以使模拟成为可能,而这在今天是不可能的。因此,具有挑战性的研究,例如在机械或医学工程和计算材料科学,可以在未来实现。除了纯粹的计算时间的减少,减少的模型导致能源效率的重大改善。因此,生态的重要性归因于这些发展。EMMA集团追求跨学科的方法,这是由计算机科学的方法,例如,通过GPU加速或数据挖掘方法。数学,物理和模型简化的特殊合成允许现有模型简化算法无法比拟的计算增益。EMMA的活动允许许多后续的科学和工业应用,并为未来的研究项目提供潜力。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Many‐scale finite strain computational homogenization via Concentric Interpolation
- DOI:10.1002/nme.6454
- 发表时间:2020-06
- 期刊:
- 影响因子:2.9
- 作者:Oliver Kunc;F. Fritzen
- 通讯作者:Oliver Kunc;F. Fritzen
Construction of a Class of Sharp Löwner Majorants for a Set of Symmetric Matrices
一组对称矩阵的一类 Sharp Löwner Majorant 的构造
- DOI:10.1155/2020/9091387
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Mauricio Fernández;Felix Fritzen
- 通讯作者:Felix Fritzen
Two-stage data-driven homogenization for nonlinear solids using a reduced order model
- DOI:10.1016/j.euromechsol.2017.11.007
- 发表时间:2018-05-01
- 期刊:
- 影响因子:4.1
- 作者:Fritzen, Felix;Kunc, Oliver
- 通讯作者:Kunc, Oliver
Finite strain homogenization using a reduced basis and efficient sampling
使用简化基础和高效采样的有限应变均质化
- DOI:10.3390/mca24020056
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Oliver Kunc;Felix Fritzen
- 通讯作者:Felix Fritzen
Comparison of reduced order homogenization techniques: pRBMOR, NUTFA and MxTFA
- DOI:10.1007/s11012-017-0814-y
- 发表时间:2018-04-01
- 期刊:
- 影响因子:2.7
- 作者:Covezzi, F.;de Miranda, S.;Sacco, E.
- 通讯作者:Sacco, E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Felix Fritzen其他文献
Professor Dr.-Ing. Felix Fritzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Felix Fritzen', 18)}}的其他基金
Scale bridging simulation methods based on order-reduction and co-simulation
基于降阶和协同仿真的尺度桥接仿真方法
- 批准号:
258759420 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Scientific Networks
Scale bridging simulation methods based on order-reduction and co-simulation
基于降阶和协同仿真的尺度桥接仿真方法
- 批准号:
231548053 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Scientific Networks
Efficient non-linear homogenization of materials with interfaces using order-reduction methodes
使用降阶方法对具有界面的材料进行高效非线性均质化
- 批准号:
222281942 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
CISM-Kurs "Computational and experimental mechanics of advanced materials" (08.-12.09.2008 Udine/Italien)
CISM 课程“先进材料的计算和实验力学”(08.-12.09.2008 乌迪内/意大利)
- 批准号:
99469776 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
CISM-Kurs "Poly-, Quasi- and Rank-One-Convexity in Applied Mechanics" (24.-28.09.2007 in Udine/Italien)
CISM 课程“应用力学中的多凸、拟凸和一阶凸”(2007 年 9 月 24 日至 28 日在意大利乌迪内)
- 批准号:
59696586 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Multiscale analysis and inverse design of uncertain meso-structures (Meso-AID)
不确定细观结构的多尺度分析和逆设计(Meso-AID)
- 批准号:
530808823 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Data-driven investigation of three-dimensional instabilities in magneto-active thin films heterogeneously patterned by design
通过数据驱动研究异质图案磁活性薄膜的三维不稳定性
- 批准号:
490723164 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Developing efficient and non-transgenic transformation methods for sterile and/or recalcitrant crops
开发针对不育和/或顽固作物的高效非转基因转化方法
- 批准号:
10107465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
Efficient and effective methods for classifying massive time series data
海量时间序列数据高效有效的分类方法
- 批准号:
DP240100048 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of efficient synthetic methods for artificial nucleic acids aimed at improving activity and reducing toxicity of oligonucleotide medicines
开发人工核酸的有效合成方法,旨在提高寡核苷酸药物的活性并降低毒性
- 批准号:
23K04930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
- 批准号:
2240848 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Diffusion coatings by energy efficient methods
采用节能方法的扩散涂层
- 批准号:
10074625 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Launchpad
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
- 批准号:
2339804 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidating the neural mechanisms of pre-performance routines and developing efficient training methods
阐明预表演程序的神经机制并开发有效的训练方法
- 批准号:
23K16669 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of efficient methods for suppressing the invasive alien tree species, Akagi, in the Ogasawara Islands, and environmental impact assessment
小笠原群岛外来入侵树种“赤城”的有效抑制方法开发及环境影响评价
- 批准号:
23K18541 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)