RAPID: Artificial Intelligence Curriculum and K-12 Teacher Agency: Barriers and Opportunities

RAPID:人工智能课程和 K-12 教师机构:障碍和机遇

基本信息

项目摘要

AI-powered tools have the potential to transform education, both in formal and informal settings. The immense potential for AI to address challenges in education has created an urgent need to characterize how K-12 education may leverage these powerful tools safely, ethically, and equitably. While the AI in education landscape is changing drastically and rapidly, little is known about K-12 educators' engagement with AI and how newly developed tools and curriculum will be received and integrated into classrooms. K-12 teachers are critical stakeholders whose understanding, opinions, and willingness to engage with AI tools will be important factors in the success of AI in K-12 education. Without fundamentally understanding K-12 teacher opinions and agency related to AI in education, there is risk of making investments in tools, training, and curricula that simply do not meet the needs or address the concerns of the teachers who will implement them. This project addresses this knowledge gap by collecting survey data from a national sample of K-12 teachers to guide the development of AI tools and curriculum. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097), and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Researchers will develop and refine a survey to be distributed to approximately 1,000 K-12 teachers nationally. The project investigates the overall research question: How do K-12 teachers perceive AI education and its impacts on the workforce? The project leverages an ecological agency model to develop the survey about AI tool and curriculum adoption. The survey will include both quantitative measures and open-response questions and will be refined through cognitive interviews and reviewed by an expert panel to ensure clarity and completeness. Research results will be disseminated in scholarly publications, as well as through venues that will reach educational practitioners and the public at large. The project results will have the potential to directly impact AI curriculum and tool development for K-12 education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
AI驱动的工具有可能在正式和非正式环境中改变教育。 AI应对教育挑战的巨大潜力迫切需要表征K-12教育如何安全,道德和公平地利用这些强大的工具。虽然教育界的AI正在发生巨大变化,但对于K-12教育者与AI的互动以及新开发的工具和课程将如何接收和集成到教室中,知之甚少。 K-12教师是关键的利益相关者,他们的理解,观点和使用AI工具的意愿将是AI在K-12教育中成功的重要因素。如果没有从根本上了解K-12的教师意见和与AI有关教育中的AI相关的代理机构,就有在工具,培训和课程上进行投资的风险,这些风险根本无法满足需求或解决将实施这些需求或解决教师的关注。该项目通过从国家样本的K-12教师样本中收集调查数据来指导AI工具和课程的开发,从而解决了这一知识差距。 This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097), and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts processes contributing to increasing students' knowledge and interest in science, technology, engineering, and数学(STEM)以及信息与通信技术(ICT)职业。研究人员将在全国范围内开发并完善调查,分配给大约1,000 k-12的教师。该项目调查了总体研究问题:K-12教师如何看待AI教育及其对劳动力的影响?该项目利用生态机构模型来开发有关AI工具和课程采用的调查。该调查将包括定量措施和开放性问题,并将通过认知访谈进行完善,并由专家小组进行审查,以确保清晰度和完整性。研究结果将在学术出版物以及将通过教育从业人员和整个公众到达的场所中传播。该项目的结果将有可能直接影响K-12教育的AI课程和工具开发。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Jensen其他文献

A sick sense of care: Perception of caregivers by sick individuals
  • DOI:
    10.1016/j.bbi.2024.01.071
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lina Hansson;Arnaud Tognetti;Pétur Sigurjónsson;Emily Brück;Karin Jensen;Mats J. Olsson;Rani Toll John;Daniel Wilhelms;Mats Lekander;Julie Lasselin
  • 通讯作者:
    Julie Lasselin
Revolutionizing Robotics
彻底改变机器人技术
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Tran;Elizabeth McNeela;Jason Robinson;Jill McLean;Karin Jensen;Holly Golecki
  • 通讯作者:
    Holly Golecki
Determinants of Intra-major Specialization and Career Decisions Among Undergraduate Biomedical Engineering Students
生物医学工程本科生专业内专业化和职业决策的决定因素
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isabel M. Miller;Grisel Lopez‐Alvarez;M. T. Cardador;Karin Jensen
  • 通讯作者:
    Karin Jensen
The IT-BME Project: Integrating Inclusive Teaching in Biomedical Engineering Through Faculty/Graduate Partnerships
IT-BME 项目:通过教师/研究生合作整合生物医学工程的包容性教学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Jaimes;Elizabeth Bottorff;Theo Hopper;Javiera Jilberto;Jessica King;Monica Wall;Maria Coronel;Karin Jensen;Elizabeth Mays;Aaron Morris;James Weiland;Melissa Wrobel;David Nordsletten;Tershia A. Pinder
  • 通讯作者:
    Tershia A. Pinder
69. Redistribution of Leukocytes Following Stress Correlates With Resting State Networks
  • DOI:
    10.1016/j.biopsych.2024.02.304
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sylvia Edwards;Hampus Grönvall;Fara Tabrizi;Sebastian Blomé;William Thompson;Jorgen Rosén;Karin Jensen;Fredrik Åhs
  • 通讯作者:
    Fredrik Åhs

Karin Jensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Jensen', 18)}}的其他基金

EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2224422
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2316547
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    2318849
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2318586
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    2315912
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Workshop proposal: Building Foundations for Engineering Faculty in Engineering Education Research
合作研究:研讨会提案:为工程教育研究中的工程教师奠定基础
  • 批准号:
    2029410
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    1943541
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2037788
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    1914735
  • 财政年份:
    2019
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HESX1-DNMT1-CDKN1C轴介导HIV-1 Nef抑制人造血干细胞功能的机制研究
  • 批准号:
    82360391
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人造血管与宿主组织顺应性不匹配诱导的吻合处应力对血管组织改重建的影响研究
  • 批准号:
    12372311
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
  • 批准号:
    10698382
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
  • 批准号:
    10598974
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
RAPID: Evaluation of an Artificial Intelligence-enhanced Edge Sensor System for Multi-Hazard Monitoring and Detection
RAPID:评估用于多危险监测和检测的人工智能增强型边缘传感器系统
  • 批准号:
    2346568
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
  • 批准号:
    10717563
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了