RAPID: Artificial Intelligence Curriculum and K-12 Teacher Agency: Barriers and Opportunities

RAPID:人工智能课程和 K-12 教师机构:障碍和机遇

基本信息

项目摘要

AI-powered tools have the potential to transform education, both in formal and informal settings. The immense potential for AI to address challenges in education has created an urgent need to characterize how K-12 education may leverage these powerful tools safely, ethically, and equitably. While the AI in education landscape is changing drastically and rapidly, little is known about K-12 educators' engagement with AI and how newly developed tools and curriculum will be received and integrated into classrooms. K-12 teachers are critical stakeholders whose understanding, opinions, and willingness to engage with AI tools will be important factors in the success of AI in K-12 education. Without fundamentally understanding K-12 teacher opinions and agency related to AI in education, there is risk of making investments in tools, training, and curricula that simply do not meet the needs or address the concerns of the teachers who will implement them. This project addresses this knowledge gap by collecting survey data from a national sample of K-12 teachers to guide the development of AI tools and curriculum. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097), and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Researchers will develop and refine a survey to be distributed to approximately 1,000 K-12 teachers nationally. The project investigates the overall research question: How do K-12 teachers perceive AI education and its impacts on the workforce? The project leverages an ecological agency model to develop the survey about AI tool and curriculum adoption. The survey will include both quantitative measures and open-response questions and will be refined through cognitive interviews and reviewed by an expert panel to ensure clarity and completeness. Research results will be disseminated in scholarly publications, as well as through venues that will reach educational practitioners and the public at large. The project results will have the potential to directly impact AI curriculum and tool development for K-12 education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能工具有可能改变正式和非正式环境中的教育。人工智能在解决教育挑战方面的巨大潜力迫切需要描述K-12教育如何安全,道德和公平地利用这些强大的工具。虽然人工智能在教育领域的应用正在发生巨大而迅速的变化,但人们对K-12教育工作者与人工智能的互动以及新开发的工具和课程将如何被接受并整合到课堂中知之甚少。K-12教师是关键的利益相关者,他们对AI工具的理解、意见和参与意愿将是AI在K-12教育中取得成功的重要因素。如果没有从根本上了解K-12教师的意见和与教育中的人工智能相关的机构,那么就有可能对工具,培训和课程进行投资,而这些工具,培训和课程根本无法满足需求或解决教师的担忧。该项目通过从全国K-12教师样本中收集调查数据来解决这一知识差距,以指导人工智能工具和课程的开发。本提案是对亲爱的同事信(DCL)的回应:在正式和非正式环境中快速加速人工智能在K-12教育中的研究(NSF 23-097),并由学生和教师创新技术经验(ITEST)计划资助,该计划支持建立对实践,计划元素,背景过程有助于增加学生对科学,技术,工程和数学(STEM)以及信息和通信技术(ICT)职业的知识和兴趣。研究人员将制定和完善一项调查,全国K-12教师1000人。该项目调查了整体研究问题:K-12教师如何看待人工智能教育及其对劳动力的影响?该项目利用生态代理模型来开发关于AI工具和课程采用的调查。调查将包括量化措施和开放式问题,并将通过认知访谈加以完善,由一个专家小组进行审查,以确保清晰和完整。研究成果将在学术出版物中传播,并通过各种渠道传播给教育工作者和广大公众。该项目的成果将有可能直接影响K-12教育的人工智能课程和工具开发。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Jensen其他文献

The pain alarm response - an example of how conscious awareness shapes pain perception
疼痛警报反应——意识觉察如何塑造疼痛感知的一个例子
  • DOI:
    10.1038/s41598-019-48903-w
  • 发表时间:
    2019-08-28
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Moa Pontén;Jens Fust;Paolo D’Onofrio;Rick van Dorp;Linda Sunnergård;Michael Ingre;John Axelsson;Karin Jensen
  • 通讯作者:
    Karin Jensen
A sick sense of care: Perception of caregivers by sick individuals
  • DOI:
    10.1016/j.bbi.2024.01.071
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lina Hansson;Arnaud Tognetti;Pétur Sigurjónsson;Emily Brück;Karin Jensen;Mats J. Olsson;Rani Toll John;Daniel Wilhelms;Mats Lekander;Julie Lasselin
  • 通讯作者:
    Julie Lasselin
Care for me or let me be: A randomized control trial testing the effect of healthcare provider’s behavior on sickness outcomes using experimental endotoxemia
关爱我还是任我自生自灭:一项利用实验性内毒素血症检验医疗服务提供者行为对疾病治疗效果影响的随机对照试验
  • DOI:
    10.1016/j.bbi.2024.12.054
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Julie Lasselin;Lina S. Hansson;Arnaud Tognetti;Elahe Tavakoli;Julia Stache;Mikael Kakeeto;Johan Melin;Sofia Bredin;Maria Lalouni;Rasmus Skarp;Catarina Lensmar;Rosa Demand;Mats J. Olsson;Daniel B. Wilhelms;Rani Toll John;Karin Jensen;Mats Lekander
  • 通讯作者:
    Mats Lekander
Revolutionizing Robotics
彻底改变机器人技术
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Tran;Elizabeth McNeela;Jason Robinson;Jill McLean;Karin Jensen;Holly Golecki
  • 通讯作者:
    Holly Golecki
The IT-BME Project: Integrating Inclusive Teaching in Biomedical Engineering Through Faculty/Graduate Partnerships
IT-BME 项目:通过教师/研究生合作整合生物医学工程的包容性教学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Jaimes;Elizabeth Bottorff;Theo Hopper;Javiera Jilberto;Jessica King;Monica Wall;Maria Coronel;Karin Jensen;Elizabeth Mays;Aaron Morris;James Weiland;Melissa Wrobel;David Nordsletten;Tershia A. Pinder
  • 通讯作者:
    Tershia A. Pinder

Karin Jensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Jensen', 18)}}的其他基金

EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2224422
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2316547
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    2318849
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2318586
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    2315912
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Workshop proposal: Building Foundations for Engineering Faculty in Engineering Education Research
合作研究:研讨会提案:为工程教育研究中的工程教师奠定基础
  • 批准号:
    2029410
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    1943541
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2037788
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    1914735
  • 财政年份:
    2019
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了