Atomic Layer-by-Layer Deposition of Pt on Pd Nanocrystals with Well-Controlled Facets

晶面可控的 Pd 纳米晶体上 Pt 原子层沉积

基本信息

  • 批准号:
    1505441
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

In this research project, Dr. Xia of the Georgia Institute of Technology and Dr. Mavrikakis of the University of Wisconsin-Madison are supported by the Macromolecular, Supramolecular and Nanochemistry (MSN) Program to develop platinum-based catalysts with significantly enhanced mass activity toward the oxygen reduction reaction (ORR) critical to the operation of a polymer electrolyte fuel cell. As a clean-energy technology, polymer electrolyte fuel cells are attractive for applications that include on-site power generation and use as a portable power source for transportation vehicles and electronic devices. However, it has been challenging to market this technology on a large scale due to the high cost associated with the platinum catalysts deposited on the cathodes for mitigating the sluggish kinetics of the oxygen reduction reaction (ORR). A reduction of roughly four-fold in platinum loading is needed in order to meet the cost requirement for the large-scale commercialization of this technology. Drs. Xia and Mavrikakis are investigating a new strategy that integrates chemical synthesis and computational modeling for maximizing the mass specific activity of a platinum-based catalyst toward ORR. They are particularly interested in depositing platinum as ultrathin skins of only a few atomic layers thick on palladium nanocrystals. They develop ORR catalysts with enhanced activity by controlling the type of facet (and thus, the arrangement of atoms on the surface) on the palladium (Pd) templates, optimizing the thickness of the platinum (Pt) skin, and maximizing the electronic coupling between the palladium atoms in the core and the platinum atoms in the shell. In addition to the scientific and technological merits, this work helps forge links between different disciplines that include materials chemistry, catalysis, surface science, computational chemistry, colloidal science, and energy technology. It also impacts on our society because it develops novel materials for both fuel cells and catalysis that play a role in energy conversion and environmental protection. The researchers promote diversity in higher education by engaging women, minorities, and other underrepresented groups into this project. By substantially reducing Pt and Pd loadings in catalytic devices, this work helps society achieve a sustainable use for platinum, one of the rarest precious metals that exists in the Earth's crust.In the new catalysts for polymer electrolyte fuel cells, platinum atoms are deposited as conformal shells on the surfaces of palladium nanocrystals pre-synthesized with a uniform size and well-controlled facets. The shell thickness is precisely tuned from one to five atomic layers. Four types of palladium nanocrystals are investigated, including cubes, octahedra, rhombic dodecahedra, and concave cubes, with each one of their surfaces covered by a single type of facet: {100}, {111}, {110}, and high-index ones, respectively. This research involves a unique combination of three approaches: modification of the electronic structure of the platinum surface (and thus, the binding energies of oxygen-containing species) by coupling with the palladium core; development of the most active surface structure by controlling the facet on the palladium core; and replacement of the platinum atoms in the bulk with palladium, a much less expensive metal relative to platinum, to save the materials cost. The outcomes of this research may include enhancement of both graduate and undergraduate education through multidisciplinary and collaborative research; a deep understanding of the heterogeneous nucleation and growth mechanisms involved in the formation of metal nanocrystals; and the development of a novel class of ORR catalysts with an improved performance (activity and durability) to cost ratio when benchmarked against the current commercial catalyst.
在这个研究项目中,佐治亚理工学院的夏博士和威斯康星大学麦迪逊分校的Mavrikakis博士得到了大分子、超分子和纳米化学(MSN)项目的支持,开发了铂基催化剂,该催化剂具有显著提高氧还原反应(ORR)的质量活性,这对聚合物电解质燃料电池的运行至关重要。作为一种清洁能源技术,聚合物电解质燃料电池在现场发电和作为运输车辆和电子设备的便携式电源等应用方面具有吸引力。然而,由于在阴极上沉积铂催化剂以减轻氧还原反应(ORR)的缓慢动力学,其成本很高,因此该技术的大规模推广一直具有挑战性。为了满足该技术大规模商业化的成本要求,需要将铂的装载量减少大约四倍。Drs。Xia和Mavrikakis正在研究一种将化学合成和计算建模相结合的新策略,以最大限度地提高铂基催化剂对ORR的质量比活性。他们特别感兴趣的是在钯纳米晶体上沉积铂作为只有几个原子层厚的超薄皮肤。他们通过控制钯(Pd)模板上的面(以及表面原子的排列)的类型,优化铂(Pt)表皮的厚度,以及最大化核心钯原子与壳层铂原子之间的电子耦合,开发出具有增强活性的ORR催化剂。除了科学和技术的优点,这项工作有助于建立不同学科之间的联系,包括材料化学、催化、表面科学、计算化学、胶体科学和能源技术。它还对我们的社会产生影响,因为它为燃料电池和催化剂开发了新型材料,在能量转换和环境保护中发挥了作用。研究人员通过让女性、少数民族和其他未被充分代表的群体参与到这个项目中来促进高等教育的多样性。通过大幅减少催化装置中的铂和钯负载,这项工作帮助社会实现了铂的可持续利用,铂是地壳中最稀有的贵金属之一。在聚合物电解质燃料电池的新型催化剂中,铂原子作为保形壳沉积在预先合成的具有均匀尺寸和良好控制面的钯纳米晶体表面。壳层的厚度可以精确地从一层调整到五层。研究了四种类型的钯纳米晶体,包括立方体、八面体、菱形十二面体和凹立方体,它们的每一个表面都覆盖着单一类型的面:{100}、{111}、{110}和高折射率的纳米晶体。这项研究涉及三种方法的独特组合:通过与钯核偶联来修饰铂表面的电子结构(从而修饰含氧物质的结合能);通过控制钯芯的面形,形成最活跃的表面结构;用钯取代大块的铂原子,钯是一种比铂便宜得多的金属,以节省材料成本。这项研究的成果可能包括通过多学科和合作研究来加强研究生和本科教育;深入了解金属纳米晶形成过程中的非均相成核和生长机制;开发新型ORR催化剂,与目前的商用催化剂相比,其性能(活性和耐用性)与成本之比有所提高。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward affordable and sustainable use of precious metals in catalysis and nanomedicine
  • DOI:
    10.1557/mrs.2018.262
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Younan Xia;Ming Zhao;Xue Wang;Da Huo
  • 通讯作者:
    Younan Xia;Ming Zhao;Xue Wang;Da Huo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Younan Xia其他文献

Nanofibers: Generation of Electrospun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment (Adv. Mater. 16/2015)
纳米纤维:通过简单的增塑剂处理生成具有可控卷曲程度的静电纺丝纳米纤维(Adv. Mater. 16/2015)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenying Liu;Justin H. Lipner;Christine H. Moran;Liangzhu Feng;Xiyu Li;S. Thomopoulos;Younan Xia
  • 通讯作者:
    Younan Xia
Synthesis and characterization of metal nanostructures with hollow interiors
内部空心金属纳米结构的合成与表征
  • DOI:
    10.1117/12.504815
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yugang Sun;Younan Xia
  • 通讯作者:
    Younan Xia
Facile Synthesis of Pt Icosahedral Nanocrystals with Controllable Sizes for the Evaluation of Size‐Dependent Activity toward Oxygen Reduction
轻松合成尺寸可控的 Pt 二十面体纳米晶体,用于评估尺寸依赖性的氧还原活性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ming Zhao;J. Holder;Zitao Chen;Minghao Xie;Zhenming Cao;M. Chi;Younan Xia
  • 通讯作者:
    Younan Xia
Marine-cloud brightening: an airborne concept
海洋云增亮:机载概念
  • DOI:
    10.1088/2515-7620/ad2f71
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Claudel;A. Lockley;F. Hoffmann;Younan Xia
  • 通讯作者:
    Younan Xia
Fabrication of cell patches using scaffolds with a hexagonal array of interconnected pores (SHAIPs)
使用具有六角形互连孔阵列 (SHAIP) 的支架制造细胞贴片

Younan Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Younan Xia', 18)}}的其他基金

High-Entropy Alloy Nanocrystals with Controlled Compositions and Surface Structures
成分和表面结构可控的高熵合金纳米晶
  • 批准号:
    2333595
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Noble-Metal Nanocrystals in Metastable Phases
亚稳态贵金属纳米晶体
  • 批准号:
    2105602
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Rational Synthesis of Alloy Nanocrystals with Controlled Compositions and Facets for Electrocatalysis
电催化用可控成分和晶面的合金纳米晶的合理合成
  • 批准号:
    2219546
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Fabrication and Scalable Production of Nanobottles
纳米瓶的制造和规模化生产
  • 批准号:
    2137669
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Metal-Sensitive Functionalization and Self-Assembly of Bimetallic Nanocrystals
双金属纳米晶的金属敏感功能化和自组装
  • 批准号:
    2002653
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bimetallic Janus Nanocrystals and Their Derivatives
双金属Janus纳米晶及其衍生物
  • 批准号:
    1804970
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Continuous and Scalable Manufacturing of Platinum-Nickel Nanocatalysts for Polymer Electrolyte Membrane Fuel Cells
用于聚合物电解质膜燃料电池的铂镍纳米催化剂的连续和规模化制造
  • 批准号:
    1634687
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Towards a Quantitative Knob for Controlling the Shape of Noble-Metal Nanocrystals
用于控制贵金属纳米晶体形状的定量旋钮
  • 批准号:
    1505400
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
  • 批准号:
    1215034
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Seeded Growth of Noble-Metal Nanocrystals
贵金属纳米晶体的种子生长
  • 批准号:
    1104614
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

丘脑POm核团投射信息在第一躯体感觉皮层Layer 5a锥形细胞上的整合机制
  • 批准号:
    31200816
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
S-layer细胞表面展示纳米级屋尘螨融合蛋白免疫治疗的实验研究
  • 批准号:
    30660166
  • 批准年份:
    2006
  • 资助金额:
    23.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Track 1 Acquisition of an Atomic-Layer Deposition System with Remote Plasma Activation of Surface Processes
MRI:轨道 1 采集具有表面过程远程等离子体激活的原子层沉积系统
  • 批准号:
    2320739
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: A High Energy Anode-Free Lithium Metal Battery Enabled by Atomic and Molecular Layer Deposition
I-Corps:通过原子和分子层沉积实现的高能无阳极锂金属​​电池
  • 批准号:
    2312633
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Study on formation mechanism on super lattices produced by radical-excited-room-temperature-atomic-layer deposition
自由基激发室温原子层沉积超晶格形成机制研究
  • 批准号:
    23H00098
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Plasma-surface interaction in plasma-enhanced atomic-layer deposition of two-dimensional materials
二维材料等离子体增强原子层沉积中的等离子体-表面相互作用
  • 批准号:
    23KF0049
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Atomic Layer Deposition of Metal Oxides
金属氧化物的原子层沉积
  • 批准号:
    580764-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Atomic Layer Deposition of Transition Metal Oxides for Oxygen Catalysis in Zinc-Air Batteries
过渡金属氧化物的原子层沉积用于锌空气电池的氧催化
  • 批准号:
    568719-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Atomic Layer Deposition System
原子层沉积系统
  • 批准号:
    471301649
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Major Research Instrumentation
Development of Zirconia Dental Implant Material Gaining Titanium Ability Using Atomic Layer Deposition
利用原子层沉积开发获得钛能力的氧化锆牙科植入材料
  • 批准号:
    22K10046
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了