CAREER: Biomechanical Characterization of Periventricular White Matter and its Age-related Degeneration

职业:脑室周围白质的生物力学特征及其与年龄相关的变性

基本信息

  • 批准号:
    2337739
  • 负责人:
  • 金额:
    $ 57.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career development (CAREER) award supports research that will apply experimental and computational strategies to quantify the biomechanical properties of periventricular white matter and its age-related degeneration. Brain aging is characterized by progressive neurodegeneration that inescapably leads to cognitive slowing and functional decline. As such, corresponding cell-level changes manifest on the organ-level as brain shape changes in the form of cortical thinning, white matter shrinking, and – most notably – lateral ventricular enlargement. The research seeks to study how progressive tissue loss drives ventricular enlargement, leads to tissue damage associated with neuroinflammation and axon loss and is clearly visible in medical imaging of the brain. The framework will explain the impact of decade-long brain shape changes on functional brain structures, such as the ventricular wall. This work could lead to potential identification of subjects showing signs of abnormal aging early on. The research will also inform educational activities that aim at educating the public about basic brain aging mechanisms and fostering early interest in science, engineering, and medicine among underrepresented groups in STEM. That includes contributions to the annual Brain Awareness Week as well as research opportunities catered to 10th-graders and undergraduate engineering students. The specific goal of the research is to combine medical image registration, mechanical characterization, and constitutive modeling to fundamentally understand the relationship between organ-level tissue volume loss and periventricular tissue degeneration during aging. Thus, the research objectives of this project include to (i) infer ventricular enlargement from longitudinal image data; (ii) to quantify the evolving properties of periventricular tissues; and (iii) to establish a constitutive brain aging model that predicts ventricular enlargement and corresponding periventricular whiter matter lesion locations. Upon completion of the work, it will become clear (i) how cerebral atrophy drives microstructural degeneration of periventricular white matter tissue and (ii) how the severity of age-related brain shape changes is a reliable predictor for the brain’s overall state of health. Additionally, the tools arising from this work will be an important addition to the soft tissue biomechanics community. The overarching focus will be on using the newly generated knowledge to identify subjects that are at increased risk for early periventricular white matter lesion formation. This project will ultimately allow the PI to advance the emerging field of computational and experimental neuromechanics and establish his long-term career in brain health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CALEAR)奖支持将应用实验和计算策略来量化脑室周围白质及其年龄相关变性的生物力学特性的研究。大脑老化的特征是进行性神经退化,不可避免地会导致认知减慢和功能衰退。因此,相应的细胞水平的变化在器官水平上表现为大脑形状的变化,表现为皮质变薄,脑白质缩小,以及--最显著的--侧脑室扩大。这项研究试图研究进行性组织丢失如何导致脑室扩大,导致与神经炎症和轴突丢失相关的组织损伤,并在大脑的医学成像中清晰可见。该框架将解释长达十年的大脑形状变化对脑功能结构(如脑室壁)的影响。这项工作可能导致对早期表现出异常衰老迹象的受试者进行潜在识别。这项研究还将为旨在教育公众了解基本大脑老化机制的教育活动提供信息,并在STEM中代表性不足的群体中培养早期对科学、工程和医学的兴趣。这包括对一年一度的大脑意识周的贡献,以及为10年级学生和工科本科生提供的研究机会。这项研究的具体目标是将医学图像配准、力学表征和本构建模相结合,从根本上了解器官水平的组织体积损失和老化过程中脑室周围组织退变之间的关系。因此,本项目的研究目标包括:(I)从纵向图像数据推断脑室扩大;(Ii)量化脑室周围组织的演变特性;(Iii)建立预测脑室扩大和相应脑室周围白质损害位置的结构性脑老化模型。这项工作完成后,(I)大脑萎缩如何导致脑室周围白质组织的微结构退化,以及(Ii)与年龄相关的脑形状变化的严重性如何是大脑整体健康状态的可靠预测指标将变得清晰。此外,这项工作产生的工具将是软组织生物力学社区的重要补充。主要的重点将是使用新产生的知识来识别早期脑室周围白质病变形成的风险增加的受试者。该项目最终将允许PI推进计算和实验神经力学的新兴领域,并建立他在脑健康方面的长期职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johannes Weickenmeier其他文献

Brain Stiffness Follows Cuprizone-Induced Variations in Local Myelin Content.
脑僵硬是由铜宗引起的局部髓磷脂含量变化引起的。
  • DOI:
    10.1016/j.actbio.2023.08.033
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Xuesong Zhang;Johannes Weickenmeier
  • 通讯作者:
    Johannes Weickenmeier
A Physics-Informed Deep Learning Deformable Medical Image Registration Method Based on Neural ODEs
  • DOI:
    10.1007/s11263-025-02476-6
  • 发表时间:
    2025-06-08
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Amirhossein Amiri-Hezaveh;Shelly Tan;Qing Deng;David Umulis;Lauren Cunniff;Johannes Weickenmeier;Adrian Buganza Tepole
  • 通讯作者:
    Adrian Buganza Tepole
Microindentation reveals softening of the equatorial and anterior sclera during early myopia development in tree shrew eyes
  • DOI:
    10.1016/j.actbio.2025.05.064
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Xuesong Zhang;Mustapha El Hamdaoui;Seongjin Lim;Rafael Grytz;Johannes Weickenmeier
  • 通讯作者:
    Johannes Weickenmeier
Elastic–viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient
使用基于相对变形梯度的混合有限元公式对生物软组织进行弹粘塑性建模
Experimental and Numerical Characterization of the Mechanical Masseter Muscle Response During Biting.
咬合过程中机械咬肌反应的实验和数值表征。
  • DOI:
    10.1115/1.4037592
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johannes Weickenmeier;Johannes Weickenmeier;M. Jabareen;B.J.D. Le Reverend;Marco Ramaioli;Edoardo Mazza;Edoardo Mazza
  • 通讯作者:
    Edoardo Mazza

Johannes Weickenmeier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Standard Grant
Development of ultrasound-based integrated techniques for biomechanical and bioacoustical characterization of tissue
开发基于超声的组织生物力学和生物声学表征集成技术
  • 批准号:
    RGPIN-2016-06472
  • 财政年份:
    2022
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Discovery Grants Program - Individual
Intravascular microstructural, chemical and biomechanical characterization of coronary plaques
冠状动脉斑块的血管内微观结构、化学和生物力学特征
  • 批准号:
    10669254
  • 财政年份:
    2022
  • 资助金额:
    $ 57.06万
  • 项目类别:
Embryologic Origins of Aortopathy: Biomechanical Characterization of Aortic Aneurysms in the NOTCH1 Mutant Model
主动脉病的胚胎学起源:NOTCH1 突变模型中主动脉瘤的生物力学特征
  • 批准号:
    10563119
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
Embryologic Origins of Aortopathy: Biomechanical Characterization of Aortic Aneurysms in the NOTCH1 Mutant Model
主动脉病的胚胎学起源:NOTCH1 突变模型中主动脉瘤的生物力学特征
  • 批准号:
    10314596
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
Multiomic & Biomechanical Characterization of Aortopathy using Machine Learning Approach: Towards Personalized Prognostication & Surgical Thresholds
多组学
  • 批准号:
    457575
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Studentship Programs
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
  • 批准号:
    10196376
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
  • 批准号:
    10369029
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
Development of ultrasound-based integrated techniques for biomechanical and bioacoustical characterization of tissue
开发基于超声的组织生物力学和生物声学表征集成技术
  • 批准号:
    RGPIN-2016-06472
  • 财政年份:
    2021
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental characterization and biomechanical modeling of soft tissues of the spine for multiple dynamic applications
用于多种动态应用的脊柱软组织的实验表征和生物力学建模
  • 批准号:
    RGPIN-2015-05472
  • 财政年份:
    2020
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了