CAREER: Controllable generation for instruction-following language models

职业:指令跟随语言模型的可控生成

基本信息

  • 批准号:
    2338866
  • 负责人:
  • 金额:
    $ 53.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

Instruction-following language models like ChatGPT are beginning to see widespread development, and the ability to understand these systems and control them is critically important to make sure that they benefit society. Despite the success of these language models in generating fluent and convincing-looking outputs, there has been a growing body of work indicating that these systems can generate outputs that are undesirable to users, model creators, and even society at large. This gap between the ability to create models that imitate humans and the inability to have them fulfill specific desiderata (e.g. refuse to generate incorrect information) shows a major deficiency in the ability to precisely control these systems. This project aims to build principled, transparent, and precise methods for controlling language models.To achieve these goals, this project views controllable generation as a viable long-term path to creating instruction-following language models that precisely follow our design goals. Controllable generation offers several benefits. First, it defines a precise statistical modeling problem on which it is possible to build principled methods and rigorous evaluations. Second, it separates the control target from the task, improving transparency by allowing users to see exactly what is being optimized by the model designers. Third, it enables much more precise controls via inference-time methods such as rejection sampling, which strictly enforces the control as a constraint. While controllable generation has major long-term benefits for language models, there also remain significant open problems that must be resolved first, including the difficulty of performing discrete search, the need for specialized training, and the lack of realistic benchmarks of control tasks in the wild. We will address these challenges through a combination of new models (such as diffusion-based models), zero-shot and decoder-based control methods, and a broad benchmark of in-the-wild control behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
像ChatGPT这样的遵循指令的语言模型开始广泛发展,理解这些系统并控制它们的能力对于确保它们造福社会至关重要。尽管这些语言模型在生成流畅和令人信服的输出方面取得了成功,但越来越多的工作表明,这些系统可以生成用户,模型创建者甚至整个社会都不希望的输出。创建模仿人类的模型的能力与无法让它们满足特定需求(例如拒绝生成不正确的信息)之间的这种差距表明,精确控制这些系统的能力存在重大缺陷。该项目旨在建立有原则的、透明的和精确的方法来控制语言模型。为了实现这些目标,该项目将可控生成视为一种可行的长期途径,以创建精确遵循我们设计目标的遵循规则的语言模型。可控发电有几个好处。首先,它定义了一个精确的统计建模问题,在这个问题上可以建立原则性的方法和严格的评估。其次,它将控制目标与任务分离,通过允许用户确切地看到模型设计者正在优化的内容来提高透明度。第三,它通过推理时间方法(如拒绝采样)实现更精确的控制,严格执行控制作为约束。虽然可控生成对语言模型有重大的长期好处,但也存在必须首先解决的重大开放问题,包括执行离散搜索的困难,需要专门的培训,以及缺乏现实的控制任务基准。我们将通过结合新模型(如基于扩散的模型)、基于零发射和解码器的控制方法以及野外控制行为的广泛基准来应对这些挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatsunori Hashimoto其他文献

Robust Distortion-free Watermarks for Language Models
用于语言模型的鲁棒无失真水印
  • DOI:
    10.48550/arxiv.2307.15593
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rohith Kuditipudi;John Thickstun;Tatsunori Hashimoto;Percy Liang
  • 通讯作者:
    Percy Liang
A case of an alpha-fetoprotein-producing intrahepatic cholangiocarcinoma
  • DOI:
    10.1007/s12328-025-02127-w
  • 发表时间:
    2025-04-10
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Takahiro Fukuda;Takashi Onoe;Naoki Tanimine;Akihisa Saito;Rie Yamamoto;Tatsunori Hashimoto;Sho Tazuma;Takeshi Sudo;Kazuya Kuraoka;Hirotaka Tashiro
  • 通讯作者:
    Hirotaka Tashiro
Undersampling is a Minimax Optimal Robustness Intervention in Nonparametric Classification
欠采样是非参数分类中的极小极大最优鲁棒性干预
  • DOI:
    10.48550/arxiv.2205.13094
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niladri S. Chatterji;Saminul Haque;Tatsunori Hashimoto
  • 通讯作者:
    Tatsunori Hashimoto
On the Fairness ROAD: Robust Optimization for Adversarial Debiasing
公平之路:对抗性去偏的鲁棒优化
  • DOI:
    10.48550/arxiv.2310.18413
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Grari;Thibault Laugel;Tatsunori Hashimoto;S. Lamprier;Marcin Detyniecki
  • 通讯作者:
    Marcin Detyniecki
Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale
易于访问的文本到图像生成大规模放大了人口刻板印象

Tatsunori Hashimoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Controllable text generation: toward non-toxic, unbiased and factual language models for sensitive applications
可控文本生成:针对敏感应用的无毒、公正和事实的语言模型
  • 批准号:
    2902174
  • 财政年份:
    2022
  • 资助金额:
    $ 53.13万
  • 项目类别:
    Studentship
CAREER: An Integrated Framework for Controllable Text Generation
职业:可控文本生成的集成框架
  • 批准号:
    2144493
  • 财政年份:
    2022
  • 资助金额:
    $ 53.13万
  • 项目类别:
    Continuing Grant
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10396080
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10609857
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10796080
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10209723
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Bioengineering programmable and drug-controllable synthetic receptors fortunable CAR-T cell behaviors
生物工程可编程和药物可控合成受体可调节 CAR-T 细胞行为
  • 批准号:
    10617657
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Bioengineering programmable and drug-controllable synthetic receptors fortunable CAR-T cell behaviors
生物工程可编程和药物可控合成受体可调节 CAR-T 细胞行为
  • 批准号:
    10383140
  • 财政年份:
    2021
  • 资助金额:
    $ 53.13万
  • 项目类别:
Waveform-controllable high-power THz wave generation for efficient control of material property
波形可控的高功率太赫兹波发生,可有效控制材料特性
  • 批准号:
    19K15468
  • 财政年份:
    2019
  • 资助金额:
    $ 53.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRISPR logic circuits for safer and controllable gene therapies
CRISPR逻辑电路实现更安全、可控的基因治疗
  • 批准号:
    10165713
  • 财政年份:
    2018
  • 资助金额:
    $ 53.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了