Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
基本信息
- 批准号:10580116
- 负责人:
- 金额:$ 12.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectCardiovascular DiseasesCaringCharacteristicsClinicalClinical ResearchClinical TrialsComputer SimulationConduct Clinical TrialsControl GroupsDataEligibility DeterminationFundingFutureGoalsGuidelinesMedicalMedicineMeta-AnalysisMethodologyMethodsNational Heart, Lung, and Blood InstituteOutcomeOutcome StudyPathologyPatientsPediatric cardiologyPerformancePilot ProjectsPopulationPrevalenceProbabilityPublishingRandomizedRandomized, Controlled TrialsRecommendationRegression AnalysisRiskRisk FactorsRisk ReductionSamplingSelection for TreatmentsStratificationTherapeuticTimeUncertaintyadverse outcomearmdesigneffective interventioneffective therapyfuture implementationhazardimprovedimproved outcomeonline resourceoutcome predictionpatient populationpersonalized approachpersonalized carepersonalized medicinepersonalized predictionsprediction algorithmpredictive modelingprimary outcomeprogramsrandomized trialrandomized, clinical trialssimulationstandard of caretreatment armtreatment choicetreatment grouptreatment strategy
项目摘要
Project summary
Under the current clinical paradigm, the majority of patients sharing a pathology tend to be treated in a similar
manner according to clinical guidelines that are based on previously conducted clinical trials combined into meta-
analyses. While some situations are amendable to the stratification of care, that is using more or less intensive
therapy based on the presence of specific risk factors, true personalization of care (i.e. therapeutic or
management selected based on a comprehensive review of patient characteristics and possibly including
patient-specific prediction models) remains exceedingly rare despite the potential for improved patient-level
outcomes. One important question in this regard that has not yet been answered is the extent to which a
personalized approach would result in clinical benefits should it be used in a large number of patients. At this
time, given the paucity of examples of large scale implementation of personalized care, it is not possible to
directly provide an answer; however, we could use existing data to generate a reliable approximation through
computer simulations. Thus, we propose to use data from ~130 previously published NHLBI funded randomized
clinical trials to simulate the effect of personalized medicine and compare the group-level outcomes to results
expected in the same patient population without using a personalized approach to treatment choice. Specifically,
for each clinical trial included in this study, we will create arm-specific prediction models for the primary outcome
and apply it to the opposite study group, thus estimating the theoretical, patient-specific probability of achieving
the primary outcome had they been assigned to the opposite trial arm. Simulations will then be performed
separately for all trials where patients are respectively assigned to: 1) the treatment arm of the trial, 2) the control
arm of the trial or 3) to whatever arm carries the lowest probability of adverse outcomes (i.e. predictive allocation).
We will then calculate the net benefit of predictive allocation by comparing the cumulative prevalence of
outcomes in that simulation vs. either the simulation where all patients are assigned to either the treatment arm
(for positive trials) or where all patients are assigned to the control arm (for negative trials). Finally, we will
compile the data from all included trials and identify factors that are associated with changes in the net benefit
of predictive allocation, including both trial-specific risk factors and performance metrics of the prediction model
used for patient allocation. This study will allow us, for the first time, to estimate the potential improvement, at
the population level, that would be associated with the widespread utilization of a personalized approach to
treatment choice. We will also generate crucial information in regards to the clinical scenarios and situations
where such an approach would generate the highest benefits. This information will be essential for the efficient
and targeted implementation of future personalized medicine programs.
项目摘要
在当前的临床范式下,大多数共享病理学的患者倾向于接受类似的治疗
根据基于先前进行的临床试验的临床准则的方式
分析。虽然某些情况是对护理分层的修正
基于特定危险因素的存在,真正的护理个性化(即治疗或
根据对患者特征的全面审查,可能包括
尽管有可能提高患者级别,但患者特定的预测模型仍然极为罕见
结果。在这方面,一个尚未回答的重要问题是
如果大量患者将其使用,则个性化方法将导致临床益处。在这个
鉴于很少大规模实施个性化护理的例子,不可能
直接提供答案;但是,我们可以使用现有数据通过
计算机模拟。因此,我们建议使用〜130的数据先前发表的NHLBI资助的数据
临床试验以模拟个性化医学的效果,并将小组级别的结果与结果进行比较
预计在同一患者人群中没有使用个性化治疗方法。具体来说,
对于本研究中包括的每个临床试验,我们将为主要结果创建ARM特定的预测模型
并将其应用于相对的研究组,从而估算了实现理论,特定于患者的概率
主要结果是将它们分配到对面的审判部门。然后将进行仿真
分别分别将患者分配给患者的所有试验分别:1)试验的治疗组,2)对照
试验的臂或3)任何手臂都带有不良结果的最低概率(即预测分配)。
然后,我们将通过比较累积的患病率来计算预测分配的净益处
结果在模拟中与所有患者分配给任何一个治疗臂的模拟
(对于积极的试验)或将所有患者分配到对照组(用于阴性试验)的地方。最后,我们会的
收集所有纳入试验的数据,并确定与净福利变化相关的因素
预测分配,包括预测模型的特定特定风险因素和绩效指标
用于患者分配。这项研究将使我们首次估计潜在的改进
人口水平,这与广泛利用个性化方法有关
治疗选择。我们还将在临床方案和情况下产生关键信息
这种方法将产生最高的好处。这些信息对于高效至关重要
并针对未来个性化医学计划的实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cedric Manlhiot其他文献
Cedric Manlhiot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于系统动力学的心血管疾病家庭医院整合照护模式构建及干预研究
- 批准号:72304183
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于妊娠期代谢异常的女性产后心血管疾病管理模式构建及实证研究
- 批准号:72374227
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
克隆性造血的发生机理及其诱发心血管疾病的机制探究
- 批准号:82300136
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心血管疾病与认知衰弱双向演化关系与整合照护策略研究
- 批准号:72304207
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hormone Therapy for Peri- and Postmenopausal Women with HIV (HoT)
感染艾滋病毒的围绝经期和绝经后妇女的激素治疗 (HoT)
- 批准号:
10698682 - 财政年份:2023
- 资助金额:
$ 12.28万 - 项目类别:
Impact of Medicaid Postpartum Coverage Extension and Mandated Postpartum Depression Screening on Care for Gestational Diabetes and Pregnancy-Induced Hypertension
医疗补助产后覆盖范围扩大和强制性产后抑郁症筛查对妊娠期糖尿病和妊娠高血压综合征护理的影响
- 批准号:
10749378 - 财政年份:2023
- 资助金额:
$ 12.28万 - 项目类别:
Targeted Automated Nephrology e-Consultation for Diabetic Kidney Disease
糖尿病肾病有针对性的自动化肾病电子咨询
- 批准号:
10591976 - 财政年份:2023
- 资助金额:
$ 12.28万 - 项目类别:
Developing a P4 Medicine Approach to Obstructive Sleep Apnea
开发治疗阻塞性睡眠呼吸暂停的 P4 医学方法
- 批准号:
10555805 - 财政年份:2023
- 资助金额:
$ 12.28万 - 项目类别:
Improving Healthcare Quality and Equity For Older Adults with HIV Under Value-Based Care Models
在基于价值的护理模式下提高艾滋病毒感染者的医疗质量和公平性
- 批准号:
10762522 - 财政年份:2023
- 资助金额:
$ 12.28万 - 项目类别: