CAREER: Learning stochastic spatiotemporal dynamics in single-molecule genetics
职业:学习单分子遗传学中的随机时空动力学
基本信息
- 批准号:2339241
- 负责人:
- 金额:$ 49.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ability to measure which genes are expressed in cells has revolutionized our understanding of biological systems. Discoveries range from pinpointing what makes different cell types unique (e.g., a skin vs. brain cell) to how diseases emerge from genetic mutations. This gene expression data is now a ubiquitously used tool in every cell biologist’s toolbox. However, the mathematical theories for reliably extracting insight from this data have lagged behind the amazing progress of the techniques for harvesting it. This CAREER project will develop key theoretical foundations for analyzing imaging data of gene expression. The advances span theory to practice, including developing mathematical models and machine-learning approaches that will be used with data from experimental collaborators. Altogether, the project aims to create a new gold standard of techniques in studying spatial imaging data of gene expression and enable revelation of new biological and biomedical insights. In addition, this proposed research will incorporate interdisciplinary graduate students and local community college undergraduates to train the next generation of scientists in the ever-evolving intersection of data science, biology, and mathematics. Alongside research activities, the project will create mentorship networks for supporting first-generation student scientists in pursuit of diversifying the STEM workforce. The supported research is a comprehensive program for studying single-molecule gene expression spatial patterns through the lens of stochastic reaction-diffusion models. The key aim is to generalize mathematical connections between these models and their observation as spatial point processes. The new theory will incorporate factors necessary to describe spatial gene expression at subcellular and multicellular scales including various reactions, spatial movements, and geometric effects. This project will also establish the statistical theory of inference on the resulting inverse problem of inferring stochastic rates from only snapshots of individual particle positions. Investigations into parameter identifiability, optimal experimental design, and model selection will ensure robust and reliable inference. In complement to the developed theory, this project will implement and benchmark cutting-edge approaches for efficiently performing large-scale statistical inference, including variational Bayesian Monte Carlo and physics-informed neural networks. The culmination of this work will be packaged into open-source software that infers interpretable biophysical parameters from multi-gene tissue-scale datasets.This CAREER Award is co-funded by the Mathematical Biology and Statistics Programs at the Division of Mathematical Sciences and the Cellular Dynamics & Function Cluster in the Division of Molecular & Cellular Biosciences, BIO Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
测量哪些基因在细胞中表达的能力彻底改变了我们对生物系统的理解。发现的范围从精确定位是什么使不同的细胞类型独特(例如,皮肤与脑细胞),以了解疾病是如何从基因突变中产生的。这种基因表达数据现在是每个细胞生物学家工具箱中普遍使用的工具。然而,从这些数据中可靠地提取洞察力的数学理论已经落后于收获它的技术的惊人进步。这个CAREER项目将为分析基因表达的成像数据奠定关键的理论基础。这些进展从理论到实践,包括开发数学模型和机器学习方法,这些方法将用于实验合作者的数据。总而言之,该项目旨在为研究基因表达的空间成像数据创造一个新的技术黄金标准,并揭示新的生物学和生物医学见解。此外,这项拟议的研究将纳入跨学科的研究生和当地社区学院的本科生,以培养数据科学,生物学和数学不断发展的交叉领域的下一代科学家。 除了研究活动,该项目还将创建导师网络,以支持第一代学生科学家追求STEM劳动力的多样化。支持的研究是通过随机反应扩散模型的透镜研究单分子基因表达空间模式的综合计划。主要目的是概括这些模型和它们的观测之间的数学联系作为空间点过程。新的理论将纳入必要的因素来描述空间基因表达在亚细胞和多细胞尺度,包括各种反应,空间运动和几何效应。这个项目还将建立推断的统计理论,由此产生的逆问题,推断随机率仅从单个粒子位置的快照。对参数可识别性、最优实验设计和模型选择的调查将确保可靠和可靠的推断。作为对已开发理论的补充,该项目将实施和基准测试用于有效执行大规模统计推断的尖端方法,包括变分贝叶斯蒙特卡罗和物理信息神经网络。 这项工作的成果将被打包成开源软件,从多基因组织规模的数据集推断可解释的生物物理参数。这个CAREER奖是由数学科学部的数学生物学和统计学项目和分子细胞生物科学部的细胞动力学功能集群共同资助&&的,该奖项反映了NSF的法定使命,并被认为是值得通过评估使用基金会的智力价值和更广泛的支持影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Miles其他文献
Development of a graphic medicine-enabled social media-based intervention for youth social anxiety
开发基于图形医学的基于社交媒体的青少年社交焦虑干预措施
- DOI:
10.1080/13284207.2021.1923128 - 发表时间:
2021 - 期刊:
- 影响因子:1.5
- 作者:
S. Rice;B. O’Bree;Michael J Wilson;Carla McEnery;M. Lim;Matthew Hamilton;J. Gleeson;S. Bendall;Simon D’Alfonso;Penni Russon;Lee Valentine;Daniela Cagliarini;Simmone Howell;Christopher Miles;Marc Pearson;M. Alvarez - 通讯作者:
M. Alvarez
The Cost-Effectiveness of a Novel Online Social Therapy to Maintain Treatment Effects From First-Episode Psychosis Services: Results From the Horyzons Randomized Controlled Trial
新型在线社会疗法维持首发精神病服务治疗效果的成本效益:Horyzons 随机对照试验的结果
- DOI:
10.1093/schbul/sbad071 - 发表时间:
2023 - 期刊:
- 影响因子:6.6
- 作者:
L. Engel;M. Alvarez;Daniela Cagliarini;Simon D’Alfonso;Jan Faller;Lee Valentine;Peter Koval;S. Bendall;Shaunagh O’Sullivan;S. Rice;Christopher Miles;D. Penn;Jess Phillips;Penni Russon;Reeva M. Lederman;E. Killackey;S. Lal;Sue Maree Cotton;C. González;H. Herrman;P. McGorry;J. Gleeson;C. Mihalopoulos - 通讯作者:
C. Mihalopoulos
Leveraging the social network for treatment of social anxiety: Pilot study of a youth-specific digital intervention with a focus on engagement of young men
利用社交网络治疗社交焦虑:针对青年的数字干预试点研究,重点关注年轻男性的参与
- DOI:
10.1016/j.invent.2020.100323 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
S. Rice;B. O’Bree;Michael J Wilson;Carla McEnery;M. Lim;Matthew Hamilton;J. Gleeson;S. Bendall;Simon D’Alfonso;Penni Russon;Lee Valentine;Daniela Cagliarini;Simmone Howell;Christopher Miles;Marc Pearson;Laura Nicholls;Nicola Garland;E. Mullen;P. McGorry;M. Alvarez - 通讯作者:
M. Alvarez
Duloxetine and Cognitive Behavioral Therapy with Phone-based Support for the Treatment of Chronic Musculoskeletal Pain: Study Protocol of the PRECICE Randomized Control Trial
度洛西汀和基于电话支持的认知行为疗法治疗慢性肌肉骨骼疼痛:PRECICE 随机对照试验的研究方案
- DOI:
10.21203/rs.3.rs-3924330/v1 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Dennis C. Ang;Swetha Davuluri;Sebastian Kaplan;Francis Keefe;Christine Rini;Christopher Miles;Haiying Chen - 通讯作者:
Haiying Chen
The combined effects of occupational health hazards: an experimental investigation of the effects of noise, nightwork and meals
职业健康危害的综合影响:噪声、夜间工作和膳食影响的实验研究
- DOI:
10.1007/bf00377682 - 发表时间:
1987 - 期刊:
- 影响因子:3
- 作者:
Andrew P. Smith;Christopher Miles - 通讯作者:
Christopher Miles
Christopher Miles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于机器学习的带随机参数偏微分方程不确定性量化
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于随机森林算法的免疫检查点抑制剂治疗肿瘤患者并发VTE的风险预测模型构建及验证
- 批准号:2025JJ60662
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于机器学习方法对随机动力系统确定性刻画研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
孟德尔随机化结合机器学习构建平秘脏腑推
拿对“轮班睡眠障碍与慢性痛 ”共病疗效的预
测模型研究
- 批准号:TGY24H270038
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
RNA m6A甲基化关键基因及相关ceRNA网络在肝细胞癌进展中的作用和调控机制:整合机器学习、孟德尔随机化、共定位分析的多组学研究
- 批准号:2024Y9017
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于随机规划和机器学习的投资组合优化
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
随机竞争市场环境下收益管理问题的在线学习算法
- 批准号:72401221
- 批准年份:2024
- 资助金额:万元
- 项目类别:青年科学基金项目
基于自适应随机竞争学习的强鲁棒性种子扩展社区检测方法
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于强化学习的复杂随机服务系统的统计推断与最
优控制
- 批准号:2024JJ5452
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于随机森林算法的髋部手术患者下肢深静脉血栓风险预测模型构建及干预研究
- 批准号:2024JJ7344
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
- 批准号:
10678601 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Stochastic Deep Learning for Electronic Health Records: Localizing Learning with Massive and Fragmented Data
电子健康记录的随机深度学习:利用海量碎片数据进行本地化学习
- 批准号:
10793778 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
- 批准号:
2306023 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
Co-Design of Neural Operators and Stochastic Optimization Algorithms for Learning Surrogates for PDE-Constrained Optimization Under Uncertainty
不确定性下偏微分方程约束优化学习代理的神经算子和随机优化算法的协同设计
- 批准号:
2324643 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Continuing Grant