CAREER: Datacenter-Aware Local Storage Stacks
职业:数据中心感知的本地存储堆栈
基本信息
- 批准号:2340218
- 负责人:
- 金额:$ 69.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We are generating data at unprecedented rates, and the bulk of this data is stored in datacenters today. However, the storage-stack infrastructure that underpins current datacenter storage services was designed in the pre-datacenter era, primarily for desktop and on-premise computers. When used as-is in datacenter systems, this storage stack incurs unnecessary performance overhead, poorly utilizes resources, and hampers sustainability objectives. Consequently, this results in elevated costs for millions of users relying on datacenter storage. This project aims to design and develop local storage stacks specifically tailored for datacenters to enhance performance, optimize resource utilization, and contribute positively to sustainability goals.The key technical approach is to ingrain datacenter-awareness into the local storage stack – in particular, the fact that datacenter systems are designed with inherent redundancy to tolerate failures. This project takes a broad view and identifies four fundamental pillars of storage stacks: performance, crash safety, efficiency, and data integrity. In four synergistic research thrusts, we will redesign and optimize the mechanisms underlying the above pillars by exploiting the inherent redundancy. This project will contribute novel techniques, system designs, protocols, and practical implementations to realize the vision of datacenter-aware storage stacks.This project also places significant emphasis on education by (i) designing new courses on storage/datacenter distributed systems, (ii) training student researchers to work on both storage hardware and software to build efficient datacenter storage and, eventually, apply the principles to other future domains, (iii) developing a "pocket" cluster educational kit to offer real systems building experience to K-12 students. This project will make all artifacts publicly available, including publications, data sets, code, and instructions to run experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们正在以前所未有的速度生成数据,而这些数据中的大部分都存储在数据中心中。但是,支撑当前数据中心存储服务的存储堆栈基础架构是在数据中心出现之前设计的,主要用于桌面和内部部署计算机。当在数据中心系统中按原样使用时,此存储堆栈会导致不必要的性能开销,资源利用率低下,并妨碍可持续性目标。因此,这导致数百万依赖数据中心存储的用户的成本增加。该项目旨在设计和开发专为数据中心定制的本地存储堆栈,以提高性能,优化资源利用率,并积极促进可持续发展目标。关键的技术方法是将数据中心感知融入本地存储堆栈-特别是数据中心系统设计有固有的冗余以容忍故障。该项目采取了广泛的观点,并确定了存储堆栈的四个基本支柱:性能,崩溃安全性,效率和数据完整性。在四个协同研究重点中,我们将通过利用固有的冗余来重新设计和优化上述支柱的机制。该项目将提供新的技术、系统设计、协议和实际实现,以实现数据中心感知存储堆栈的愿景。该项目还非常重视教育,通过(i)设计关于存储/数据中心分布式系统的新课程,(ii)培训学生研究人员研究存储硬件和软件,以构建高效的数据中心存储,并最终,将这些原则应用于其他未来的领域,(iii)开发一个“口袋”集群教育工具包,为K-12学生提供真实的系统构建经验。该项目将使所有工件公开,包括出版物,数据集,代码和运行实验的说明。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramnatthan Alagappan其他文献
Fault-Tolerance, Fast and Slow: Exploiting Failure Asynchrony in Distributed Systems
容错,快速和慢速:利用分布式系统中的故障异步
- DOI:
10.5555/3291168.3291197 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ramnatthan Alagappan;Aishwarya Ganesan;Jing Liu;Andrea C. Arpaci;Remzi H. Arpaci - 通讯作者:
Remzi H. Arpaci
Protocol-Aware Recovery for Consensus-Based Storage
基于共识的存储的协议感知恢复
- DOI:
10.1109/icdew.2011.5767656 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ramnatthan Alagappan;Aishwarya Ganesan;Eric Lee;Aws Albarghouthi;Vijay Chidambaram;Andrea C. Arpaci;Remzi H. Arpaci - 通讯作者:
Remzi H. Arpaci
Ramnatthan Alagappan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: FoMR: Taming the Instruction Bottleneck in Modern Datacenter Applications
合作研究:FoMR:克服现代数据中心应用中的指令瓶颈
- 批准号:
2346057 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Standard Grant
CAREER: OS-Managed Remote Procedure Call for Datacenter Applications
职业:针对数据中心应用程序的操作系统管理的远程过程调用
- 批准号:
2238665 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
CAREER: Near-Memory Datacenter Network
职业:近内存数据中心网络
- 批准号:
2239020 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
NeTS: Medium: Managing Datacenter Traffic Bursts, Fast and Slow
NeTS:中:管理数据中心突发流量、快速和慢速
- 批准号:
2313164 - 财政年份:2023
- 资助金额:
$ 69.97万 - 项目类别:
Standard Grant
Exploiting and Enhancing Programmable Logic for Deep Learning and Datacenter Acceleration
利用和增强可编程逻辑进行深度学习和数据中心加速
- 批准号:
RGPIN-2022-04445 - 财政年份:2022
- 资助金额:
$ 69.97万 - 项目类别:
Discovery Grants Program - Individual
Packaging of novel Ultra-dyNamiC pHotonic switches and transceivers for integration into 5G radio access network and datacenter sub-systems
新型 Ultra-dyNamiC pHotonic 开关和收发器的封装,用于集成到 5G 无线接入网络和数据中心子系统中
- 批准号:
10049387 - 财政年份:2022
- 资助金额:
$ 69.97万 - 项目类别:
EU-Funded
CAREER: Rethinking Configuration Management for Cloud and Datacenter Systems
职业:重新思考云和数据中心系统的配置管理
- 批准号:
2145295 - 财政年份:2022
- 资助金额:
$ 69.97万 - 项目类别:
Continuing Grant
Co-Designing Distributed Applications with Datacenter Networks
与数据中心网络共同设计分布式应用程序
- 批准号:
RGPIN-2017-04261 - 财政年份:2021
- 资助金额:
$ 69.97万 - 项目类别:
Discovery Grants Program - Individual
Co-Designing Distributed Applications with Datacenter Networks
与数据中心网络共同设计分布式应用程序
- 批准号:
RGPIN-2017-04261 - 财政年份:2020
- 资助金额:
$ 69.97万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: FoMR: Taming the Instruction Bottleneck in Modern Datacenter Applications
合作研究:FoMR:克服现代数据中心应用中的指令瓶颈
- 批准号:
2011168 - 财政年份:2020
- 资助金额:
$ 69.97万 - 项目类别:
Standard Grant