CAREER: A Multi-phase Biosensing Approach towards Point-of-Care Evaluation of Pseudomonas aeruginosa Virulence in Infected Chronic Wounds

职业生涯:用于护理点评估慢性感染伤口中铜绿假单胞菌毒力的多阶段生物传感方法

基本信息

  • 批准号:
    2340867
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

Infections from bacteria that are resistant to antibiotics are a major source of healthcare costs ($4.6B annually) and treatment complications that lead to death. More than 2.8 million drug-resistant infections occur each year in the US, with more than 35,000 deaths despite widespread availability of antibiotics, mostly because they are not effective against drug-resistant bacteria. The likelihood of complication or death is increased for patients with weakened immune systems. The bacteria form complex structures called biofilms that protect themselves from antibiotic treatment. These biofilms are developed through a bacteria cell communication strategy called quorum sensing. This project seeks to study how quorum sensing can be tracked by an inexpensive, rapid, and flexible sensor that provides information on how quickly bacteria are growing and how fast biofilms are being developed. The sensor developed and used in this study is unique because of its flexibility and ability to measure electrical and chemical activity related to bacteria growth. The long-term research goal of this project is to make possible the fast (less than 5 minutes) determination of infection so that the correct antibiotics and dosage can be delivered at the most opportune time. Importantly, this sensing approach can also be used in other applications, like water filtering and agriculture. The educational goal of this project is to support research and graduate education for underrepresented students, especially veterans and non-traditional students. These students often face unique obstacles to participating in traditional undergraduate research experiences, such as work, family, or military commitments. This project will address these challenges through a combination of coursework, research, and workshop experiences designed to expose and engage students in new ideas and job opportunities.The primary motivation for this project is the development of a strategy to quickly measure bacterial infections in chronic, non-healing wounds for the inhibition of antibiotic resistance/tolerance, which is both an important societal problem and of fundamental scientific interest. More than 2.8 million antimicrobial-resistant infections occur each year in the US, with more than 35,000 deaths despite widespread availability of antibiotics in large part because they are ineffective against resistant strains and biofilms, especially but not only in immune compromised patients. The research objective of this project is to leverage concentration-dependent quorum sensing (QS) molecules to quantify key transitions in biofilm formation that relate to the progression of virulence in bacterial pathogens. This project focuses on Pseudomonas aeruginosa biofilm formation and virulence, as a model system for other bacterial pathogens commonly found in chronic wounds. This project uses a nonwoven nanofiber composite electrode design in electrochemical impedance spectroscopy and voltammetric experiments to quantify virulence progression via pyocyanin and 3OC12HSL (QS molecules used to mediate virulence) detection and quantification. The following scientific contributions will result from this work: 1) A directly quantifiable relationship between bacterial concentration (P. aeruginosa), QS molecule concentration (Pyocyanin and AHLs - 3OC12HSL), and stage of biofilm development; 2) Enablement of a flexible, tunable voltametric sensor that offers highly sensitive and specific electrochemical detection of redox species while being easily incorporated into wearable fabrics or wound dressings given its bio-textile design; and 3) The functionalization of nanofiber composite aptasensors, enabling generation of quantifiable electrochemical signals to greatly reduce the Limit of Detection (LOD) and improve specificity. This work addresses the critical challenge of quantifying species-specific signaling molecules associated with progression of bacterial load (bioburden). The long-term importance of this work is increased understanding of more effective treatment timing, while reducing the risk for development of drug resistance. Understanding the precise moments in which a bacterial pathogen may be advancing in virulence is important for any organism that may be infected by these bacteria, including plants, animals, and humans.This project is jointly funded by the Biosensing Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对抗生素具有抗药性的细菌感染是医疗费用(每年46亿美元)和导致死亡的治疗并发症的主要来源。美国每年发生超过280万例耐药感染,尽管抗生素随处可见,但仍有超过3.5万人死亡,主要是因为它们对耐药细菌无效。对于免疫系统较弱的患者,并发症或死亡的可能性增加。这些细菌形成复杂的结构,称为生物膜,可以保护自己免受抗生素治疗的影响。这些生物膜是通过一种称为群体感应的细菌细胞通信策略来开发的。该项目旨在研究如何通过一种廉价、快速和灵活的传感器来跟踪群体感应,该传感器提供有关细菌生长速度和生物膜开发速度的信息。在这项研究中开发和使用的传感器是独特的,因为它的灵活性和测量与细菌生长有关的电和化学活动的能力。该项目的长期研究目标是使快速(不到5分钟)确定感染成为可能,以便在最合适的时间提供正确的抗生素和剂量。重要的是,这种传感方法还可以用于其他应用,如水过滤和农业。该项目的教育目标是支持代表不足的学生,特别是退伍军人和非传统学生的研究和研究生教育。这些学生在参加传统的本科生研究经历时往往面临着独特的障碍,例如工作、家庭或军事承诺。这个项目将通过课程作业、研究和研讨会经验的结合来解决这些挑战,旨在让学生接触和吸引新的想法和工作机会。这个项目的主要动机是开发一种策略,快速测量慢性、不可愈合的伤口中的细菌感染,以抑制抗生素耐药性/耐受性,这既是一个重要的社会问题,也是一个基本的科学利益。美国每年发生超过280万例抗菌素耐药感染,尽管抗生素广泛存在,但仍有超过3.5万人死亡,这在很大程度上是因为它们对耐药菌株和生物膜无效,特别是但不仅是在免疫功能低下的患者中。这个项目的研究目标是利用浓度依赖的群体感应(QS)分子来量化生物膜形成中的关键转变,这些转变与细菌病原体毒力的发展有关。这个项目的重点是铜绿假单胞菌生物被膜的形成和毒性,作为慢性伤口中常见的其他细菌病原体的模型系统。本项目在电化学阻抗谱和伏安实验中使用非织造纳米纤维复合电极设计,通过绿青素和3OC12HSL(用于介导毒力的QS分子)的检测和定量来量化毒力进展。这项工作将取得以下科学贡献:1)细菌浓度(铜绿假单胞菌)、QS分子浓度(绿青素和AHLS-3OC12HSL)与生物膜发育阶段之间的直接可量化关系;2)实现灵活、可调的伏安传感器,该传感器对氧化还原物种进行高灵敏度和特异性的电化学检测,同时由于其生物纺织品的设计,可轻松地将其整合到可穿戴织物或伤口敷料中;以及3)纳米纤维复合适配传感器的功能化,使可产生可量化的电化学信号,从而大大降低检测限(LOD),并提高特异性。这项工作解决了量化与细菌负荷(生物负荷)进展相关的物种特定信号分子的关键挑战。这项工作的长期重要性是增加对更有效的治疗时机的理解,同时降低耐药发展的风险。对于任何可能被细菌感染的有机体,包括植物、动物和人类,了解细菌病原体毒力提升的准确时刻是很重要的。该项目由生物传感计划和既定的刺激竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordon Gilmore其他文献

Engineering and Science Student Preparedness for Research: Exploring the Connections Between Student Identity and Readiness for Research
工程和科学学生的研究准备:探索学生身份与研究准备之间的联系
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin McCave;Jordon Gilmore;K. Burg
  • 通讯作者:
    K. Burg
Classifying changes in LN-18 glial cell morphology: a supervised machine learning approach to analyzing cell microscopy data via FIJI and WEKA
LN-18 胶质细胞形态变化的分类:通过 FIJI 和 WEKA 分析细胞显微镜数据的监督机器学习方法

Jordon Gilmore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
  • 批准号:
    EP/Y032624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
ERI: Aqueous Phase Reforming of Multi-Component Carboxylic Acid Systems over Pt Catalysts
ERI:Pt 催化剂上多组分羧酸体系的水相重整
  • 批准号:
    2347256
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SBIR Phase I: Combating Multi-Drug Resistant Gram-negative Healthcare-Associated Infections
SBIR 第一阶段:对抗多重耐药革兰氏阴性医疗相关感染
  • 批准号:
    2310453
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SBIR Phase I: Advanced multi-locus genome engineering to enable consolidated bioprocessing for the low-cost conversion of lignocellulose to hydrocarbon fuels and products
SBIR 第一阶段:先进的多位点基因组工程,实现整合生物加工,将木质纤维素低成本转化为碳氢化合物燃料和产品
  • 批准号:
    2112323
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Solid-phase synthesis of multi(triazole)s through azide protection
叠氮保护固相合成多(三唑)化合物
  • 批准号:
    23K17920
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
  • 批准号:
    10659772
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
2/2 Multi-Center CLEAN AIR 2 Randomized Control Trial in COPD
2/2 慢性阻塞性肺病多中心 CLEAN AIR 2 随机对照试验
  • 批准号:
    10722232
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
  • 批准号:
    10714336
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了