Collaborative Research: Fatigue Crack Formation and Growth in the Presence of Reversible Martensitic Transformation in High Temperature Shape Memory Alloys

合作研究:高温形状记忆合金中存在可逆马氏体相变时疲劳裂纹的形成和扩展

基本信息

项目摘要

Newly discovered high-temperature shape memory alloys can recover large deformations at elevated temperatures through a reversible transformation of their crystal structure. This has warranted significant interest in their use as solid-state actuators in aeronautics, automotive, and energy-conversion applications. These actuators could potentially provide ultra-high energy density actuation and would allow multifunctional use, resulting in lower cost and maintenance due to simplified device designs. The aim of this research project is to accelerate the development cycle of these materials by elucidating the life-limiting fatigue mechanisms. The knowledge of fatigue progression in these alloys will facilitate the wider acceptance of materials exhibiting reversible martensitic transformation in engineering applications. Furthermore, through the synergistic combination of experiments and modeling and its multidisciplinary nature, this research will train the next generation of experts in multifunctional, phase transforming materials. It will also support the involvement of underrepresented groups in research and professional experiences via partnership with the Boeing Company, NASA, and international collaborators.This research will involve multiscale thermomechanical testing and microstructural characterization as well as sophisticated modeling to identify defect kinetics as a function of microstructural attributes in the presence of reversible martensitic transformation and associated irreversible processes. While recently discovered Nickel-Titanium-Hafnium (NiTiHf) alloys will be used as a model material system, many of the experimental findings and models are expected to be transferable to other phase transforming materials as well. The experimental work will rely on in-situ thermomechanical testing in scanning electron microscope and ex-situ transmission electron microscopy, as well as digital image correlation and synchrotron X-ray tomography to monitor defect formation/growth and to characterize microstructure, deformation structure, and fracture surfaces. The modeling work will be based on a phase field approach to fatigue crack formation and growth. This approach will provide an advantage over current methods that rely on self-similar crack growth assumptions of conventional fracture mechanics, which break down due to the variability of the underlying microstructure and their complex influence on the mechanical fields close to the crack tip.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新发现的高温形状记忆合金可以通过其晶体结构的可逆转变在高温下恢复大变形。这保证了它们在航空、汽车和能量转换应用中作为固态致动器的显著兴趣。这些致动器可能提供超高能量密度的致动,并允许多功能使用,由于简化了设备设计,从而降低了成本和维护成本。本研究的目的是通过阐明这些材料的极限疲劳机制来加快其开发周期。了解这些合金的疲劳过程将有助于在工程应用中更广泛地接受表现可逆马氏体相变的材料。此外,通过实验和建模的协同结合及其多学科性质,本研究将培养多功能相变材料的下一代专家。它还将通过与波音公司、美国宇航局和国际合作者的合作,支持代表性不足的群体参与研究和专业经验。这项研究将涉及多尺度的热力学测试和微观结构表征,以及复杂的建模,以确定缺陷动力学作为可逆性马氏体相变和相关不可逆过程中微观结构属性的函数。虽然最近发现的镍钛铪(NiTiHf)合金将被用作模型材料系统,但许多实验发现和模型也有望转移到其他相变材料中。实验工作将依靠扫描电子显微镜和非原位透射电子显微镜的原位热力学测试,以及数字图像相关和同步加速器x射线断层扫描来监测缺陷的形成/生长,并表征微观结构,变形结构和断裂面。建模工作将基于疲劳裂纹形成和扩展的相场方法。这种方法将比目前依赖于传统断裂力学的自相似裂纹扩展假设的方法具有优势,传统断裂力学的失效是由于底层微观结构的可变性及其对裂纹尖端附近力学场的复杂影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys
  • DOI:
    10.1016/j.actamat.2021.117232
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    S. Xu;J. Pons;R. Santamarta;I. Karaman;O. Benafan;R. Noebe
  • 通讯作者:
    S. Xu;J. Pons;R. Santamarta;I. Karaman;O. Benafan;R. Noebe
Actuation-Induced stable crack growth in near-equiatomic nickel-titanium shape memory alloys: Experimental and numerical analysis
近等原子镍钛形状记忆合金中驱动诱导的稳定裂纹扩展:实验和数值分析
  • DOI:
    10.1016/j.ijsolstr.2020.09.032
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jape, S.;Young, B.;Haghgouyan, B.;Hayrettin, C.;Baxevanis, T.;Lagoudas, D.C.;Karaman, I.
  • 通讯作者:
    Karaman, I.
Compositional effects on strain-controlled actuation fatigue of NiTiHf high temperature shape memory alloys
NiTiHf高温形状记忆合金应变控制驱动疲劳的成分效应
  • DOI:
    10.1016/j.scriptamat.2023.115904
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Demblon, A.;Mabe, J.H.;Karaman, I.
  • 通讯作者:
    Karaman, I.
Effect of Temperature on the Fracture Toughness of a NiTiHf High Temperature Shape Memory Alloy
  • DOI:
    10.1007/s40830-019-00245-2
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    B. Young;B. Haghgouyan;D. Lagoudas;I. Karaman
  • 通讯作者:
    B. Young;B. Haghgouyan;D. Lagoudas;I. Karaman
Fracture resistance of shape memory alloys under thermomechanical loading
形状记忆合金在热机械载荷下的抗断裂性能
  • DOI:
    10.1016/j.engfracmech.2021.108059
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Makkar, J.;Young, B.;Karaman, I.;Baxevanis, T.
  • 通讯作者:
    Baxevanis, T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim Karaman其他文献

Data-augmented modeling in laser powder bed fusion: A Bayesian approach
  • DOI:
    10.1016/j.addma.2024.104545
  • 发表时间:
    2024-09-25
  • 期刊:
  • 影响因子:
  • 作者:
    Peter Morcos;Brent Vela;Cafer Acemi;Alaa Elwany;Ibrahim Karaman;Raymundo Arróyave
  • 通讯作者:
    Raymundo Arróyave
<em>In-situ</em> investigation of anisotropic crystalline and bulk negative thermal expansion in titanium alloys
  • DOI:
    10.1016/j.actamat.2021.116847
  • 发表时间:
    2021-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Dominic Gehring;Yang Ren;Zeina Barghouti;Ibrahim Karaman
  • 通讯作者:
    Ibrahim Karaman
Weak strain-rate sensitivity of hardness in the VCoNi equi-atomic medium entropy alloy
  • DOI:
    10.1016/j.msea.2024.147091
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kelvin Y. Xie;Digvijay Yadav;Benjamin L. Hackett;Yuwei Zhang;Raj Patel;Yi-Cheng Lai;Griffin Turner;Ibrahim Karaman;George M. Pharr
  • 通讯作者:
    George M. Pharr
Active interlocking metasurfaces enabled by shape memory alloys
由形状记忆合金实现的主动联锁超表面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abdelrahman Elsayed;Taresh Guleria;K. Atli;Ophelia Bolmin;Benjamin Young;P. Noell;Brad Boyce;A. Elwany;R. Arróyave;Ibrahim Karaman
  • 通讯作者:
    Ibrahim Karaman
Random strains and strain glass transformations in NiTiHf and NiTiZr systems: An NMR study
NiTiHf和NiTiZr体系中的随机应变及应变玻璃转变:一项核磁共振研究
  • DOI:
    10.1016/j.actamat.2025.121099
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Rui Li;Serdar Torun;Jacob Santiago;Daniel Salas;Bibhu P. Sahu;Ibrahim Karaman;Joseph H. Ross
  • 通讯作者:
    Joseph H. Ross

Ibrahim Karaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim Karaman', 18)}}的其他基金

REU Site: Multifunctional Materials
REU 网站:多功能材料
  • 批准号:
    1852535
  • 财政年份:
    2019
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Glassy Ferromagnetic Shape Memory Alloys: Interplay Between Disorder, Phase Transitions, and Multi-Physics Couplings
玻璃态铁磁形状记忆合金:无序、相变和多物理耦合之间的相互作用
  • 批准号:
    1508634
  • 财政年份:
    2015
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
REU Site: Multifunctional Materials
REU 网站:多功能材料
  • 批准号:
    1461202
  • 财政年份:
    2015
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
I-Corps: Self-Adaptive, Ultra-Low Modulus Alloys and Devices
I-Corps:自适应超低模量合金和器件
  • 批准号:
    1355529
  • 财政年份:
    2013
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
U.S.-Turkey Workshop on Shape Memory Alloys: Current Challenges and Future Prospect, June 2010, at Koc University, Istanbul, Turkey
美国-土耳其形状记忆合金研讨会:当前挑战和未来前景,2010 年 6 月,土耳其伊斯坦布尔科克大学
  • 批准号:
    1016528
  • 财政年份:
    2010
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Advanced High Strength Multiphase Steels through a Combined Alloy-Microstructural Design
通过组合合金微观结构设计先进的高强度多相钢
  • 批准号:
    0900187
  • 财政年份:
    2009
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Materials World Network: U.S.-Japan Research Collaboration in Meta-Magnetic Shape Memory Alloys with Enhanced Ductility and Controlled Porosity
材料世界网络:美日在增强延展性和控制孔隙率的超磁形状记忆合金方面的研究合作
  • 批准号:
    0909170
  • 财政年份:
    2009
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Design and In-vitro Characterization of Ni-free Biocompatible Shape Memory Alloys
无镍生物相容性形状记忆合金的设计和体外表征
  • 批准号:
    0731133
  • 财政年份:
    2007
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
IMR: Acquisition of a State-of-the-Art X-Ray Diffraction System for Magneto-Thermo-Mechanical Materials Characterization Research and Education
IMR:采购最先进的 X 射线衍射系统,用于磁热机械材料表征研究和教育
  • 批准号:
    0415847
  • 财政年份:
    2004
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
NSF-Europe: U.S. - Germany Research Collaboration: "Bridging Length Scales in Deforming Single and Textured Polycrystals of Structural Magnetic Shape Memory Alloys"
NSF-欧洲:美国-德国研究合作:“结构磁性形状记忆合金单晶和纹理多晶变形中的桥接长度尺度”
  • 批准号:
    0244126
  • 财政年份:
    2003
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
  • 批准号:
    2226164
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Collaborative Research: DARE: A Personalized Assistive Robotic System that assesses Cognitive Fatigue in Persons with Paralysis
合作研究:DARE:一种评估瘫痪者认知疲劳的个性化辅助机器人系统
  • 批准号:
    2226165
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Data Management and Coordinating Center (DMCC) for the Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centers (CRC)
肌痛性脑脊髓炎/慢性疲劳综合症数据管理和协调中心 (DMCC) (ME/CFS) 合作研究中心 (CRC)
  • 批准号:
    10613696
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
Collaborative Research: Improving contact fatigue and wear properties using graded nanostructured surfaces in metallic materials
合作研究:使用金属材料中的分级纳米结构表面改善接触疲劳和磨损性能
  • 批准号:
    2004556
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving contact fatigue and wear properties using graded nanostructured surfaces in metallic materials
合作研究:使用金属材料中的分级纳米结构表面改善接触疲劳和磨损性能
  • 批准号:
    2004944
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Joint Space Muscle Fatigue Model and Integration into Full Body Motion Prediction for Repetitive Dynamic Tasks
合作研究:关节空间肌肉疲劳模型并集成到重复动态任务的全身运动预测中
  • 批准号:
    2014278
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint Space Muscle Fatigue Model and Integration into Full Body Motion Prediction for Repetitive Dynamic Tasks
合作研究:关节空间肌肉疲劳模型并集成到重复动态任务的全身运动预测中
  • 批准号:
    2014281
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Fatigue Crack Formation and Growth in the Presence of Reversible Martensitic Transformation in High Temperature Shape Memory Alloys
合作研究:高温形状记忆合金中存在可逆马氏体相变时疲劳裂纹的形成和扩展
  • 批准号:
    1917441
  • 财政年份:
    2019
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了