Theory and Methods for Multiple Testing and Inference

多重测试和推理的理论和方法

基本信息

  • 批准号:
    0404979
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

Principal Investigator: Joseph P RomanoProposal Title: Theory and methods for Multiple Testing Proposal Id: DMS - 0404979AbstractThe main goal of this research proposal is the development of theory and methodology for problems in multiple testing and inference. A classical approach to dealing with multiplicity is to require decision rules that control the familywise error rate (FWER), the probability of rejecting at least one true hypothesis. But when the number of tests is large, control of the FWER is so stringent that alternative hypotheses have little chance of being detected. In response, the false discovery rate (FDR) of Benjamini and Hochberg has gained wide use.Alternative measures, such as the probability of rejecting k or more true hypotheses, or ones based directly of the actual false discovery proportion (FDP) will be considered by the investigator. For each measure of error control, it is desired to construct procedures that exhibit error control under the weakest possible assumptions. Subject to error control, the procedures should be efficient in their ability to detect alternative hypotheses. The main approach used to develop methods that do not rely on unrealistic or unverifiable model assumptions will be the use of the bootstrap, subsampling, and other computer-intensive methods. These tools offer viable approaches to obtaining valid distributional approximations while assuming very little about the stochastic mechanism generating the data. Just as resampling has been enormously successful in the case of questions of a single inference, its use can be extended fruitfully to questions of multiple inferences.While such an approach has been used with some success, its full potential is currently unrealized and it is clear that efficient and more broadly applicable methods will be advanced in the next few years. The power of the bootstrap and related methods is that the joint dependency structure of the individual test statistics can be captured so that methods need not be overly conservative. The pursuit of such new methodology will be investigated from theoretical, computational and practical points of view. Notably, the investigator will address the multiple inference problem when the number of hypotheses is large compared with sample size, the open problem of directional errors, as well as the construction of efficient techniques that control the FDR, as well as other measures of error.Virtually any scientific experiment sets out to answer questions about the process under investigation, which often can be translated formally into a set of hypotheses. It is the exception that a single hypothesis is considered. Moreover, due to effects of "data snooping" (or "data mining"), other inference questions arise as well.The statistician is then faced with the challenge of accounting for all possible errors resulting from a complex data analysis, so that any resulting inferences or interesting conclusions can reliably be viewed as real structure rather than artifacts of random data. While the history of statistical methods that deal with problems of simultaneous inference data back at least half a century, most of the classical techniques typically rely on strong assumptions, or they are inefficient. Driven by the advent of computers and the information age, there has been a growing demand for more reliable and efficient methods for multiple testing. For example, current methods in biotechnology and genomics generate DNA microarray experiments, where expression levels in cells for thousands of genes must be analyzed simultaneously. Similar problems arise in image processing, such as neuroimaging, and econometrics. It is now not uncommon to encounter data consisting of megabytes of information. Thus, the statistician is faced with new challenges of devising techniques that are not based on strong assumptions and can effectively deal with problems of multiplicity in the presence of vast amounts of data.
主要研究者:Joseph P Romano提案标题:理论和方法的多重测试建议Id:DMS -0404979摘要本研究建议的主要目标是发展的理论和方法的问题,在多重测试和推理。 处理多重性的一个经典方法是要求控制族错误率(FWER)的决策规则,即拒绝至少一个真实假设的概率。 但是,当测试的数量是大的,控制的FWER是如此严格,替代假设几乎没有机会被检测到。 作为回应,Benjamini和Hochberg的错误发现率(FDR)得到了广泛的使用。替代措施,如拒绝k个或更多真实假设的概率,或直接基于实际错误发现比例(FDP)的措施将被研究者考虑。 对于误差控制的每一个测量,都希望构造在最弱的可能假设下表现出误差控制的过程。 在误差控制的前提下,这些程序应当能够有效地发现备选假设。 用于开发不依赖于不现实或无法验证的模型假设的方法的主要方法将是使用自举、二次抽样和其他计算机密集型方法。 这些工具提供了可行的方法来获得有效的分布近似值,而很少假设产生数据的随机机制。 就像rescue在单一推理的问题中取得了巨大的成功一样,它的使用也可以是 虽然这种方法已经取得了一些成功,但其全部潜力目前尚未实现,很明显,在未来几年内将提出有效和更广泛适用的方法。 Bootstrap和相关方法的强大之处在于,可以捕获单个检验统计量的联合依赖结构,因此方法不需要过于保守。 将从理论、计算和实践的角度来研究这种新方法的追求。 值得注意的是,研究者将解决多重推理问题时,假设的数量是大样本量,方向错误的开放性问题,以及建设有效的技术,控制FDR,以及其他措施的错误。几乎任何科学实验着手回答有关的过程中调查的问题,这通常可以正式地转化为一系列假设。 唯一的例外是只考虑一个假设。 此外,由于“数据窥探”(或“数据挖掘”)的影响,其他推理问题也随之出现,统计学家面临着一个挑战,即考虑到复杂数据分析中可能出现的所有错误,以便任何由此产生的推理或有趣的结论都可以可靠地被视为真实的结构,而不是随机数据的伪影。虽然处理同时推理数据问题的统计方法的历史至少可以追溯到半个世纪,但大多数经典技术通常依赖于强假设,或者效率低下。 随着计算机和信息时代的到来,人们越来越需要更可靠、更有效的多重测试方法。 例如,目前的生物技术和基因组学方法产生DNA微阵列实验,其中必须同时分析细胞中数千个基因的表达水平。类似的问题出现在图像处理中,如神经成像和计量经济学。 现在遇到由兆字节信息组成的数据并不罕见。 因此,统计人员面临着新的挑战,即设计出不以强有力的假设为基础的技术,并能有效地处理大量数据中的多重性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Romano其他文献

Routine Culturing for Legionella in the Hospital Environment May Be a Good Idea: A Three-Hospital Prospective Study
  • DOI:
    10.1097/00000441-198708000-00007
  • 发表时间:
    1987-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Victor L. Yu;Thomas R. Beam;Robert M. Lumish;Richard M. Vickers;Jean Fleming;Carolyn McDermott;Joseph Romano
  • 通讯作者:
    Joseph Romano
A clinical model to predict postoperative improvement in sub-domains of the modified Japanese Orthopedic Association score for degenerative cervical myelopathy
预测退行性脊髓型颈椎病改良日本骨科协会评分子领域术后改善的临床模型
  • DOI:
    10.1007/s00586-023-07607-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Byron F. Stephens;L. McKeithan;W. Waddell;Joseph Romano;Anthony M. Steinle;Wilson E. Vaughan;J. Pennings;H. Nian;Inamullah Khan;M. Bydon;S. Zuckerman;Kristin R. Archer;A. Abtahi
  • 通讯作者:
    A. Abtahi
Multiple dosage forms of the NNRTI microbicide dapivirine: product development and evaluation
  • DOI:
    10.1186/1742-4690-3-s1-s54
  • 发表时间:
    2006-12-21
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Joseph Romano
  • 通讯作者:
    Joseph Romano
189. Radiographic predictors of mortality following atlanto-occipital dissociation
  • DOI:
    10.1016/j.spinee.2022.06.208
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rishabh Gupta;Anthony Steinle;Joseph Romano;Jordan Bley;Hani Chanbour;Scott L. Zuckerman;Amir M. Abtahi;Byron F. Stephens
  • 通讯作者:
    Byron F. Stephens
Didanosine but not high doses of hydroxyurea rescue pigtail macaque from a lethal dose of SIV(smmpbj14).
去羟肌苷而非高剂量的羟基脲可将猪尾猕猴从致死剂量的 SIV (smmpbj14) 中拯救出来。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Franco Lori;Robert C. Gallo;Andrei G. Malykh;Andrea Cara;Joseph Romano;Phillip D. Markham;Genoveffa Franchini
  • 通讯作者:
    Genoveffa Franchini

Joseph Romano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Romano', 18)}}的其他基金

Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2400301
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
  • 批准号:
    2207270
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Computer-intensive Inference with Applications to Social Sciences
计算机密集型推理及其在社会科学中的应用
  • 批准号:
    1949845
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization inference for contemporary problems in statistics
合作研究:当代统计学问题的随机推理
  • 批准号:
    1307973
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Support of LIGO Data Analysis Activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
  • 批准号:
    1205585
  • 财政年份:
    2012
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Multiple Problems in Multiple Testing and Simultaneous Inference
多重测试同时推理的多个问题
  • 批准号:
    1007732
  • 财政年份:
    2010
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Support of LIGO data analysis activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
  • 批准号:
    0855371
  • 财政年份:
    2009
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
New Methodology for Multiple Testing and Simultaneous Inference
多重测试和同时推理的新方法
  • 批准号:
    0707085
  • 财政年份:
    2007
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Approximate and Exact Inference Via Computer-Intensive Methods
通过计算机密集型方法进行近似和精确推理
  • 批准号:
    0103926
  • 财政年份:
    2001
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Collaboration to Integrate Research and Education between University of Texas, Brownsville and LIGO
德克萨斯大学布朗斯维尔分校与 LIGO 合作整合研究和教育
  • 批准号:
    9981795
  • 财政年份:
    1999
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
  • 批准号:
    2415067
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Investigating Lithospheric Heterogeneity of the North American Craton with Multiple Seismological Methods
多种地震学方法研究北美克拉通岩石圈非均质性
  • 批准号:
    2319445
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Mobile reception methods of disaster information broadcast from multiple global navigation satellite systems
多个全球导航卫星系统灾害信息广播的移动接收方法
  • 批准号:
    23K03858
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Methods for Emerging Spatially-resolved Transcriptomics with Multiple Samples
新兴的多样本空间分辨转录组学的计算方法
  • 批准号:
    10711312
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Development of novel methods to enable robust comparison of real-world Progression Free Survival (rwPFS) and Clinical Trial PFS in Multiple Myeloma
开发新方法以对多发性骨髓瘤的真实无进展生存期 (rwPFS) 和临床试验 PFS 进行稳健比较
  • 批准号:
    10797236
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
New methods for multiple comparison procedures
多重比较程序的新方法
  • 批准号:
    RGPIN-2018-05119
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral methods for single and multiple graph inference
用于单图和多图推理的谱方法
  • 批准号:
    2210805
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Novel p-Value Based Multiple Testing Methods for Variable Selection with False Discovery Rate Control
基于 p 值的新颖变量选择多重测试方法以及错误发现率控制
  • 批准号:
    2210687
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10415744
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
Leveraging passive objective assessment methods of preschooler's media use to examine multiple paths of influence on sleep, executive function and weight status
利用学龄前儿童媒体使用的被动客观评估方法来检查对睡眠、执行功能和体重状况的影响的多种途径
  • 批准号:
    10701894
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了