Computer-intensive Inference with Applications to Social Sciences
计算机密集型推理及其在社会科学中的应用
基本信息
- 批准号:1949845
- 负责人:
- 金额:$ 29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will develop new statistical computer-intensive procedures that address current problems in the social sciences. Two different research questions that are related by common principles and methodologies will be addressed by this research. First, the project will develop new methods for generating inferences from ranked data that do not rely on strong model assumptions. It is common for data available from different populations (such as countries, schools, or hospitals) to be ordered by some performance measure, say from best to worst in the form of ranks. Improved methods for ranked data will have many applications in the social sciences, including the analysis of countries ranked in reading, math, and science or the ranking of neighborhoods by intergenerational income mobility. Second, the project will address the 'hot hand fallacy' and the human misperception of randomness. The common understanding of streaks in small samples has been challenged recently, and this research will provide solid statistical tools to address this controversy. In addition, graduate students will participate in the research process, and the project will develop free and easily accessible software.The problems to be addressed in this project are related by common inferential methodologies that will provide sound principles to areas in need of formal statistical analysis. So that inferential procedures will not rely on unverifiable model-based assumptions, computer-intensive methods of statistical inference will be used, such as resampling, bootstrap, and randomization methods. Although machine calculations will be developed, they will be accompanied by mathematical or theoretical results that justify their use. The problems to be addressed will require novel insights in order to develop rigorous statistical properties so that the methods may be applied safely in practice. In addition, the project will draw heavily on the literature in multiple testing and simultaneous inference. For example, inference for ranks will result in the construction of simultaneous confidence regions for ranks with guaranteed error control. This will allow researchers to know whether empirical rankings represent real differences between populations or whether they are just artifacts of the data. While the problems to be addressed stem from specific applied questions, they will require solutions that are of fundamental importance in statistics. These open problems are exciting and challenging not only from the point of view of mathematical statistics, but also because burgeoning applications demand new statistical methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目将开发新的统计计算机密集型程序,以解决当前社会科学中的问题。这项研究将解决两个由共同原则和方法联系在一起的不同研究问题。首先,该项目将开发新的方法,从不依赖于强有力的模型假设的排名数据中生成推论。从不同人群(如国家、学校或医院)获得的数据通常是按某种绩效衡量标准排序的,比如按照排名的形式从最好到最差。改进的排名数据方法将在社会科学中有许多应用,包括对阅读、数学和科学排名的国家进行分析,或根据代际收入流动性对社区进行排名。其次,该项目将解决“热手谬误”和人类对随机性的误解。对小样本中条纹的普遍理解最近受到了挑战,这项研究将提供可靠的统计工具来解决这一争议。此外,研究生将参与研究过程,该项目将开发免费且易于使用的软件。该项目中要解决的问题通过共同的推理方法联系在一起,这些方法将为需要正式统计分析的领域提供可靠的原则。为了使推理过程不依赖于不可验证的基于模型的假设,将使用计算机密集的统计推断方法,如重抽样、自举和随机化方法。尽管将开发机器计算,但它们将伴随着证明其使用的数学或理论结果。要解决的问题将需要有新的见解,以便发展严格的统计性质,以便这些方法可以安全地应用于实践。此外,该项目将大量借鉴多重测试和同时推理方面的文献。例如,对于等级的推断将导致为具有保证差错控制的等级构建同时置信域。这将使研究人员知道经验性排名是否代表了人群之间的真正差异,或者它们是否只是数据的产物。虽然要解决的问题源于具体的应用问题,但它们需要在统计学上具有根本重要性的解决办法。这些悬而未决的问题不仅从数理统计的角度来看是令人兴奋和具有挑战性的,而且还因为新兴的应用程序需要新的统计方法。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Romano-Wolf multiple-testing correction in Stata
Stata 中的 Romano-Wolf 多重检验校正
- DOI:10.1177/1536867x209
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Clarke, D;Romano, J;Wolf, M.
- 通讯作者:Wolf, M.
Confidence intervals for seroprevalence
血清阳性率的置信区间
- DOI:10.1093/restud/rdab020
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:DiCiccio, T;Ritzwoller, D;Romano, J;Shaikh, A.
- 通讯作者:Shaikh, A.
CLT for U-statistics with growing dimension
用于维度不断增长的 U 统计的 CLT
- DOI:10.5705/ss.202020.0048
- 发表时间:2021
- 期刊:
- 影响因子:1.4
- 作者:DiCiccio, C;Romano, J.
- 通讯作者:Romano, J.
Permutation testing for dependence in time series
- DOI:10.1111/jtsa.12638
- 发表时间:2020-09
- 期刊:
- 影响因子:0.9
- 作者:Joseph P. Romano;Marius A. Tirlea
- 通讯作者:Joseph P. Romano;Marius A. Tirlea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Romano其他文献
Routine Culturing for Legionella in the Hospital Environment May Be a Good Idea: A Three-Hospital Prospective Study
- DOI:
10.1097/00000441-198708000-00007 - 发表时间:
1987-08-01 - 期刊:
- 影响因子:
- 作者:
Victor L. Yu;Thomas R. Beam;Robert M. Lumish;Richard M. Vickers;Jean Fleming;Carolyn McDermott;Joseph Romano - 通讯作者:
Joseph Romano
A clinical model to predict postoperative improvement in sub-domains of the modified Japanese Orthopedic Association score for degenerative cervical myelopathy
预测退行性脊髓型颈椎病改良日本骨科协会评分子领域术后改善的临床模型
- DOI:
10.1007/s00586-023-07607-6 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Byron F. Stephens;L. McKeithan;W. Waddell;Joseph Romano;Anthony M. Steinle;Wilson E. Vaughan;J. Pennings;H. Nian;Inamullah Khan;M. Bydon;S. Zuckerman;Kristin R. Archer;A. Abtahi - 通讯作者:
A. Abtahi
189. Radiographic predictors of mortality following atlanto-occipital dissociation
- DOI:
10.1016/j.spinee.2022.06.208 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Rishabh Gupta;Anthony Steinle;Joseph Romano;Jordan Bley;Hani Chanbour;Scott L. Zuckerman;Amir M. Abtahi;Byron F. Stephens - 通讯作者:
Byron F. Stephens
Multiple dosage forms of the NNRTI microbicide dapivirine: product development and evaluation
- DOI:
10.1186/1742-4690-3-s1-s54 - 发表时间:
2006-12-21 - 期刊:
- 影响因子:3.900
- 作者:
Joseph Romano - 通讯作者:
Joseph Romano
Didanosine but not high doses of hydroxyurea rescue pigtail macaque from a lethal dose of SIV(smmpbj14).
去羟肌苷而非高剂量的羟基脲可将猪尾猕猴从致死剂量的 SIV (smmpbj14) 中拯救出来。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:1.5
- 作者:
Franco Lori;Robert C. Gallo;Andrei G. Malykh;Andrea Cara;Joseph Romano;Phillip D. Markham;Genoveffa Franchini - 通讯作者:
Genoveffa Franchini
Joseph Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Romano', 18)}}的其他基金
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2400301 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2207270 - 财政年份:2022
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Collaborative Research: Randomization inference for contemporary problems in statistics
合作研究:当代统计学问题的随机推理
- 批准号:
1307973 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Support of LIGO Data Analysis Activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
1205585 - 财政年份:2012
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Multiple Problems in Multiple Testing and Simultaneous Inference
多重测试同时推理的多个问题
- 批准号:
1007732 - 财政年份:2010
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Support of LIGO data analysis activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
0855371 - 财政年份:2009
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
New Methodology for Multiple Testing and Simultaneous Inference
多重测试和同时推理的新方法
- 批准号:
0707085 - 财政年份:2007
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Theory and Methods for Multiple Testing and Inference
多重测试和推理的理论和方法
- 批准号:
0404979 - 财政年份:2004
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Approximate and Exact Inference Via Computer-Intensive Methods
通过计算机密集型方法进行近似和精确推理
- 批准号:
0103926 - 财政年份:2001
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
Collaboration to Integrate Research and Education between University of Texas, Brownsville and LIGO
德克萨斯大学布朗斯维尔分校与 LIGO 合作整合研究和教育
- 批准号:
9981795 - 财政年份:1999
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
Workshop: Intensive, interdisciplinary short courses on Bayesian inference for ecologists
研讨会:针对生态学家的贝叶斯推理强化、跨学科短期课程
- 批准号:
2042028 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
Standard Grant
EQuitable, Uniform and Intelligent Time-based conformal Inference (EQUITI) Framework
公平、统一和智能的基于时间的共形推理 (EQUITI) 框架
- 批准号:
10599622 - 财政年份:2021
- 资助金额:
$ 29万 - 项目类别:
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
1752614 - 财政年份:2018
- 资助金额:
$ 29万 - 项目类别:
Continuing Grant
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10577884 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9282329 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series with Rare and Latent Events
大数据:具有罕见和潜在事件的大规模时间序列的因果推断
- 批准号:
8852180 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
9097149 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
BIGDATA: Causal Inference in Large-Scale Time Series
大数据:大规模时间序列中的因果推断
- 批准号:
10415027 - 财政年份:2013
- 资助金额:
$ 29万 - 项目类别:
Quantitative, Model-based Medical Decision support by Bayesian Inference
通过贝叶斯推理支持基于模型的定量医疗决策
- 批准号:
7658616 - 财政年份:2009
- 资助金额:
$ 29万 - 项目类别: