Approximate and Exact Inference Via Computer-Intensive Methods
通过计算机密集型方法进行近似和精确推理
基本信息
- 批准号:0103926
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will continue the development of inferential methods that do not rely on unrealistic or unverifiable model assumptions. Standard inferential methods rest upon strong assumptions, especially in the analysis of time series, random fields, or whenever complex dependencies must be taken into account. In contrast, resampling, subsampling, and other computer-intensive methods offer viable approaches to obtaining valid distributional approximations while assuming very little about the stochastic mechanism generating the data. In part 1 of this proposal, the investigator will address several important problems so that these bootstrap and subsampling methods can serve as good approximate methods in statistical practice. The main issues we wish to tackle include the following: further relaxing of conditions (such as slower mixing rate for long memory data and allowing for nonstationarity); more theory for irregularly spaced data; studying delicate problems where the rate of convergence depends on unknown parameters, such as in the notoriously difficult problem of autoregressive type processes with unit roots; improve the accuracy of distribution estimation by techniques such as Richardson extrapolation, and by optimal choice of block size; and pursue the development of goodness-of-fit tests in the dependent data case. These methods are especially useful in modelling of economic time series, due to the inherent difficulties caused by nonlinearity and nonstationarity. In part 2 of the proposal, the investigator will pursue the development of methods that have exact finite sample validity, such as the construction of conservative confidence regions, without the expense of losing efficiency, at least in large samples. Typical nonparametric methods are based on approximations or limit theorems, so that finite sample behavior is always an issue, and is often typically addressed by small scale simulations. In contrast, the goal here is to construct nonparametric procedures with guaranteed finite sample behavior and good efficiency.The statistical analysis of data is vital in many diverse scientific disciplines: physics, engineering, acoustics, geostatistics, medicine, econometrics, seismology, law, ecology, and others. The scope of modern statistical analysis is continually expanding, as is the need for inferential methods that are valid without imposing strong model assumptions. The investigator will continue the pursuit of the development of statistical methods that can be applied safely in practice, keeping in mind the many applications toward which such methods can fruitfully be applied. The philosophical approach of the investigator is to develop practical methods that have a robustness of validity so that they may be applied in increasingly complex situations. The impact of this work is potentially quite large because strong inferential statements can be made without imposing strong assumptions.
研究者将继续开发不依赖于不现实或无法验证的模型假设的推理方法。标准推理方法依赖于强假设,特别是在时间序列,随机场的分析中,或者必须考虑复杂依赖关系的时候。相比之下,再抽样、二次抽样和其他计算机密集型方法提供了可行的方法来获得有效的分布近似,同时对生成数据的随机机制假设很少。在本提案的第1部分中,研究者将解决几个重要问题,以便这些自举和二次抽样方法可以在统计实践中作为良好的近似方法。我们希望处理的主要问题包括:(如长记忆数据的混合速率较慢,并考虑到非平稳性);不规则间隔数据的更多理论;研究收敛速率取决于未知参数的微妙问题,如具有单位根的自回归型过程的众所周知的困难问题;通过Richardson外推等技术和通过最佳选择区组大小来提高分布估计的准确性;并在相关数据情况下开发拟合优度检验。由于非线性和非平稳性所带来的固有困难,这些方法在经济时间序列建模中特别有用。在提案的第2部分,研究者将致力于开发具有精确有限样本有效性的方法,例如保守置信区域的构建,而不会损失效率,至少在大样本中是这样。典型的非参数方法基于近似或极限定理,因此有限样本行为始终是一个问题,并且通常通过小规模模拟来解决。数据的统计分析在许多不同的科学学科中是至关重要的:物理学、工程学、声学、地质统计学、医学、计量经济学、地震学、法学、生态学等。现代统计分析的范围在不断扩大,同时也需要在不强加强有力的模型假设的情况下有效的推理方法。 研究人员将继续追求发展的统计方法,可以安全地应用于实践中,牢记许多应用程序,这些方法可以卓有成效地应用。 研究者的哲学方法是开发具有稳健有效性的实用方法,以便它们可以应用于日益复杂的情况。这项工作的影响可能是相当大的,因为强有力的推理陈述可以不强加强有力的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Romano其他文献
Routine Culturing for Legionella in the Hospital Environment May Be a Good Idea: A Three-Hospital Prospective Study
- DOI:
10.1097/00000441-198708000-00007 - 发表时间:
1987-08-01 - 期刊:
- 影响因子:
- 作者:
Victor L. Yu;Thomas R. Beam;Robert M. Lumish;Richard M. Vickers;Jean Fleming;Carolyn McDermott;Joseph Romano - 通讯作者:
Joseph Romano
A clinical model to predict postoperative improvement in sub-domains of the modified Japanese Orthopedic Association score for degenerative cervical myelopathy
预测退行性脊髓型颈椎病改良日本骨科协会评分子领域术后改善的临床模型
- DOI:
10.1007/s00586-023-07607-6 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Byron F. Stephens;L. McKeithan;W. Waddell;Joseph Romano;Anthony M. Steinle;Wilson E. Vaughan;J. Pennings;H. Nian;Inamullah Khan;M. Bydon;S. Zuckerman;Kristin R. Archer;A. Abtahi - 通讯作者:
A. Abtahi
189. Radiographic predictors of mortality following atlanto-occipital dissociation
- DOI:
10.1016/j.spinee.2022.06.208 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Rishabh Gupta;Anthony Steinle;Joseph Romano;Jordan Bley;Hani Chanbour;Scott L. Zuckerman;Amir M. Abtahi;Byron F. Stephens - 通讯作者:
Byron F. Stephens
Multiple dosage forms of the NNRTI microbicide dapivirine: product development and evaluation
- DOI:
10.1186/1742-4690-3-s1-s54 - 发表时间:
2006-12-21 - 期刊:
- 影响因子:3.900
- 作者:
Joseph Romano - 通讯作者:
Joseph Romano
Didanosine but not high doses of hydroxyurea rescue pigtail macaque from a lethal dose of SIV(smmpbj14).
去羟肌苷而非高剂量的羟基脲可将猪尾猕猴从致死剂量的 SIV (smmpbj14) 中拯救出来。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:1.5
- 作者:
Franco Lori;Robert C. Gallo;Andrei G. Malykh;Andrea Cara;Joseph Romano;Phillip D. Markham;Genoveffa Franchini - 通讯作者:
Genoveffa Franchini
Joseph Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Romano', 18)}}的其他基金
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2400301 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2207270 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Computer-intensive Inference with Applications to Social Sciences
计算机密集型推理及其在社会科学中的应用
- 批准号:
1949845 - 财政年份:2020
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Collaborative Research: Randomization inference for contemporary problems in statistics
合作研究:当代统计学问题的随机推理
- 批准号:
1307973 - 财政年份:2013
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Support of LIGO Data Analysis Activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
1205585 - 财政年份:2012
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Multiple Problems in Multiple Testing and Simultaneous Inference
多重测试同时推理的多个问题
- 批准号:
1007732 - 财政年份:2010
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Support of LIGO data analysis activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
0855371 - 财政年份:2009
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
New Methodology for Multiple Testing and Simultaneous Inference
多重测试和同时推理的新方法
- 批准号:
0707085 - 财政年份:2007
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
Theory and Methods for Multiple Testing and Inference
多重测试和推理的理论和方法
- 批准号:
0404979 - 财政年份:2004
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Collaboration to Integrate Research and Education between University of Texas, Brownsville and LIGO
德克萨斯大学布朗斯维尔分校与 LIGO 合作整合研究和教育
- 批准号:
9981795 - 财政年份:1999
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
相似国自然基金
发展基于Exact Muffin-Tin轨道的第一性原理量子输运方法
- 批准号:11874265
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
- 批准号:
2310756 - 财政年份:2023
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Exact scalable inference for coalescent processes
合并过程的精确可扩展推理
- 批准号:
EP/R044732/1 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Research Grant
"Identifying, Understanding, and Exploiting Semantics During Exact Inference in Discrete Bayesian Networks"
“在离散贝叶斯网络的精确推理过程中识别、理解和利用语义”
- 批准号:
238880-2012 - 财政年份:2016
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Exact Relaxation-Based Inference in Graphical Models (ERBI)
图模型中基于精确松弛的推理 (ERBI)
- 批准号:
323301551 - 财政年份:2016
- 资助金额:
$ 18.6万 - 项目类别:
Research Grants
"Identifying, Understanding, and Exploiting Semantics During Exact Inference in Discrete Bayesian Networks"
“在离散贝叶斯网络的精确推理过程中识别、理解和利用语义”
- 批准号:
238880-2012 - 财政年份:2015
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
"Identifying, Understanding, and Exploiting Semantics During Exact Inference in Discrete Bayesian Networks"
“在离散贝叶斯网络的精确推理过程中识别、理解和利用语义”
- 批准号:
238880-2012 - 财政年份:2014
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
"Identifying, Understanding, and Exploiting Semantics During Exact Inference in Discrete Bayesian Networks"
“在离散贝叶斯网络的精确推理过程中识别、理解和利用语义”
- 批准号:
238880-2012 - 财政年份:2013
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
"Identifying, Understanding, and Exploiting Semantics During Exact Inference in Discrete Bayesian Networks"
“在离散贝叶斯网络的精确推理过程中识别、理解和利用语义”
- 批准号:
238880-2012 - 财政年份:2012
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods for Approximately Exact Statistical Inference
近似精确统计推断的数学方法
- 批准号:
0906569 - 财政年份:2009
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Exact Inference Software for Correlated Categorical Data
用于相关分类数据的精确推理软件
- 批准号:
7053934 - 财政年份:2004
- 资助金额:
$ 18.6万 - 项目类别: