Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer

整合多组学、成像和纵向数据来预测宫颈癌的放射反应

基本信息

  • 批准号:
    10734702
  • 负责人:
  • 金额:
    $ 52.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-07 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Cervical cancer is among the most common cancer diagnoses among women, and treatment failure of standard of care chemoradiation therapy (CRT) for locally advanced cervical cancer (LACC) is as high as 30-50%. Since recurrent and metastatic diseases are not curable, there is a pressing need to identify patients at risk of treatment failure as early as possible to allow for personalized treatment, rather than after a failure and progression. While TCGA’s molecular stratification of cervical cancer using genomic data failed to associate to patient outcomes, we recently published on integrating genomic and imaging data to improve LACC risk stratification after CRT. Therefore, in this study we intend to use multi-omics data to define and validate LACC risk groups and identify group-specific treatment targets. Based on our preliminary data that indicate distinct biological mechanisms drive CRT resistance in patients with different levels of lymph node (LN) involvement at presentation, we will stratify patients by LN status to develop and validate novel radiogenomic biomarkers. Prognostic models will be developed using gene expression data from pre-treatment tumor biopsy and radiomic features from pre- treatment PET imaging data. Upstream driver and/or feature genes will be validated at the RNA and protein levels by qRT-PCR, Western blotting, and tissue microarray (TMA). One such gene identified from our preliminary data using a radiogenomic approach is nuclear factor erythroid 2–related factor 2 (NRF2), which has not been previously characterized in LACC, since it is not frequently mutated in cervical cancer. We will perform functional analysis to study NRF2 biology in LACC via clonogenic survival assay and other standard assays. In addition to pre-treatment biomarkers, we will leverage radiomic features from our time course MR images and on-treatment gene expression data to develop novel radiogenomic biomarkers to assess a patient's evolving risk of treatment failure over the course of CRT, informing adjustment of therapy at mid-treatment. The pre-treatment model will be further refined by applying deep learning to identify predictive features for CRT outcome directly from clinical PET images to inform intensified treatment from the beginning. Finally, we will apply multi-omics approaches (scRNA-seq, proteomics, metabolomics) to characterize the biology related to LACC CRT radiogenomic biomarkers. Taken together, we expect fulfillment of these aims will create a series of optimized, validated recurrence biomarkers at presentation and over the course of 6 weeks of CRT treatment, and will indicate targets for personalized alternative treatment regimens. Beyond the specific application to LACC, our proposal will generate novel methods to integrate multi-omics data to improve hypothesis-driven cancer research.
项目摘要/摘要 宫颈癌是女性最常见的癌症诊断之一,标准的治疗失败 放化疗(CRT)治疗局部晚期宫颈癌(LACC)的成功率高达30%-50%。自.以来 复发和转移性疾病是不可治愈的,迫切需要确定有可能接受治疗的患者。 及早失败,允许个体化治疗,而不是在失败和进展后进行治疗。而当 TCGA使用基因组数据对宫颈癌进行的分子分层未能与患者的预后相关联, 我们最近发表了关于整合基因组和成像数据以改善CRT后LACC风险分层的文章。 因此,在这项研究中,我们打算使用多组学数据来定义和验证LACC风险组,并确定 针对特定群体的治疗目标。基于我们的初步数据表明不同的生物机制驱动 CRT抵抗的患者在出现不同程度的淋巴结(LN)受累时,我们会分层 根据LN状态的患者开发和验证新的放射基因组生物标志物。预测模型将是 使用来自治疗前肿瘤活检的基因表达数据和来自治疗前的 处理正电子发射计算机断层成像数据。上游驱动和/或功能基因将在RNA和蛋白质中得到验证 通过qRT-PCR、Western blotting和组织芯片(TMA)进行检测。其中一个这样的基因是从我们的 使用放射基因组学方法的初步数据是核因子红系2相关因子2(NRF2),它具有 以前在LACC中没有特征,因为它在宫颈癌中不经常突变。我们将表演 功能分析通过克隆存活实验和其他标准实验研究LACC中的NRF2生物学。在……里面 除了治疗前的生物标记物外,我们还将利用我们的时间进程磁共振图像和 治疗中的基因表达数据,以开发新的放射基因组生物标志物来评估患者的演变风险 在CRT治疗过程中的治疗失败,在治疗中期通知治疗调整。前置处理 通过应用深度学习来直接识别CRT结果的预测特征,将进一步完善模型 从临床PET图像到提示强化治疗从一开始。最后,我们将应用多组学 研究LACC CRT相关生物学特性的方法(scRNA-seq、蛋白质组学、代谢组学) 放射基因组生物标志物。总而言之,我们预计这些目标的实现将创造一系列优化的、 经过验证的复发生物标志物在临床表现和CRT治疗6周过程中,将 指出个性化替代治疗方案的目标。除了对LACC的特定应用之外,我们的 该提案将产生整合多组学数据的新方法,以改善假说驱动的癌症研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Zhang其他文献

Jin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin Zhang', 18)}}的其他基金

HPV genomic structure in cervical cancer radiation response and recurrence detection
HPV基因组结构在宫颈癌放射反应和复发检测中的作用
  • 批准号:
    10634999
  • 财政年份:
    2023
  • 资助金额:
    $ 52.15万
  • 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
  • 批准号:
    10643978
  • 财政年份:
    2022
  • 资助金额:
    $ 52.15万
  • 项目类别:
Deep learning in cervical cancer radiogenomics
宫颈癌放射基因组学中的深度学习
  • 批准号:
    10424854
  • 财政年份:
    2022
  • 资助金额:
    $ 52.15万
  • 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
  • 批准号:
    10308435
  • 财政年份:
    2020
  • 资助金额:
    $ 52.15万
  • 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
  • 批准号:
    9891761
  • 财政年份:
    2020
  • 资助金额:
    $ 52.15万
  • 项目类别:
HPV alternative splicing in cervical cancer radiation response
HPV选择性剪接在宫颈癌放射反应中的作用
  • 批准号:
    10523104
  • 财政年份:
    2020
  • 资助金额:
    $ 52.15万
  • 项目类别:
FASEB SRC on Protein Kinases and Protein Phosphorylation
FASEB SRC 关于蛋白激酶和蛋白磷酸化
  • 批准号:
    9754337
  • 财政年份:
    2019
  • 资助金额:
    $ 52.15万
  • 项目类别:
Live-cell Activity Architecture in Cancer
癌症中的活细胞活性结构
  • 批准号:
    9319218
  • 财政年份:
    2015
  • 资助金额:
    $ 52.15万
  • 项目类别:
Live-cell Activity Architecture in Cancer
癌症中的活细胞活性结构
  • 批准号:
    10673027
  • 财政年份:
    2015
  • 资助金额:
    $ 52.15万
  • 项目类别:
Signal Transduction by PI3K/Akt/mTOR Pathway
通过 PI3K/Akt/mTOR 途径进行信号转导
  • 批准号:
    9108384
  • 财政年份:
    2015
  • 资助金额:
    $ 52.15万
  • 项目类别:

相似海外基金

Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
  • 批准号:
    DP240100640
  • 财政年份:
    2024
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
  • 批准号:
    23K01889
  • 财政年份:
    2023
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10452217
  • 财政年份:
    2022
  • 资助金额:
    $ 52.15万
  • 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
  • 批准号:
    10670838
  • 财政年份:
    2022
  • 资助金额:
    $ 52.15万
  • 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
  • 批准号:
    DP200100492
  • 财政年份:
    2020
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
  • 批准号:
    407264
  • 财政年份:
    2019
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
  • 批准号:
    18K18240
  • 财政年份:
    2018
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
  • 批准号:
    17K12379
  • 财政年份:
    2017
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
  • 批准号:
    17K13937
  • 财政年份:
    2017
  • 资助金额:
    $ 52.15万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
  • 批准号:
    8742767
  • 财政年份:
    2014
  • 资助金额:
    $ 52.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了