Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
基本信息
- 批准号:1701585
- 负责人:
- 金额:$ 2.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 31st Annual Workshop on Automorphic Forms and Related Topics (AFW) will take place March 6-9, 2017 at East Tennessee State University in Johnson City, Tennessee. The AFW is an internationally recognized, well-respected conference on topics related to automorphic forms, which have played a key role in many recent breakthroughs in mathematics. Continuing a three-decade long tradition, the AFW will bring together a geographically diverse group of participants at a wide range of career stages, from graduate students to senior professors. Typically, about half of the attendees at the AFW are at early stages of their careers, and about one quarter to one third of participants are women. The AFW will continue to provide a supportive and encouraging environment for giving talks, exchanging ideas, and beginning new collaborations. In addition to the research talks, the AFW will - like in past years - have two professional development panels on topics such as good mathematical writing, early career development, and transitioning from one career stage to the next. Furthermore, for the first time at AFW, there will be a "speed" session in which participants (primarily junior mathematicians) present short talks about current research projects which may still be in preliminary stages. Automorphic forms constitute a major area of study in number theory and related areas. One of the goals of the AFW is to promote new interactions and collaborations between researchers working in different areas concerning automorphic forms. Thus, the workshop will highlight a wide range of developments in areas including the analytic, algebraic, combinatorial, and p-adic theory of automorphic forms and related topics such as L-functions. Automorphic forms have played a key role in many breakthroughs in mathematics, including the proofs of Fermat's Last Theorem (by Andrew Wiles), Serre's Conjecture (by Chandrashekhar Khare, Mark Kisin, and Jean-Pierre Wintenberger), the Sato-Tate Conjecture (by Thomas Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor), Serre's Uniformity Conjecture (by Yuri Bilu and Pierre Parent),the Monstrous Moonshine Conjecture (for which Borcherds was awarded the Fields Medal), and the Fundamental Lemma (for which Ngo Bau Chau was awarded the Fields Medal). The topics covered in this year's workshop are likely to include Bianchi, elliptic, Jacobi, Hilbert, and Siegel modular forms, elliptic curves and abelian varieties, special values of L-functions, p-adic aspects of L-functions and automorphic forms, connections with representation theory, mock modular forms, quadratic forms, and additional related areas of research.Website:http://automorphicformsworkshop.org/
第31届自守形式及相关主题年度研讨会(AFW)将于2017年3月6日至9日在田纳西州约翰逊城的东田纳西州立大学举行。AFW是一个国际公认的,备受尊敬的关于自守形式相关主题的会议,自守形式在最近的许多数学突破中发挥了关键作用。延续三十年的悠久传统,AFW将汇集来自不同地理位置的参与者,从研究生到高级教授,他们处于广泛的职业阶段。通常情况下,大约一半的与会者在AFW是在他们的职业生涯的早期阶段,约四分之一到三分之一的参与者是妇女。AFW将继续提供一个支持性和鼓励性的环境,以进行演讲,交流想法,并开始新的合作。除了研究会谈,AFW将像过去几年一样,有两个专业发展小组,主题包括良好的数学写作,早期职业发展以及从一个职业阶段过渡到下一个职业阶段。此外,AFW将首次举办“速度”会议,与会者(主要是初级数学家)将就目前可能仍处于初步阶段的研究项目进行简短的讨论。自守形式是数论及相关领域的一个主要研究领域。AFW的目标之一是促进在不同领域工作的研究人员之间关于自守形式的新的互动和合作。因此,研讨会将突出领域的广泛发展,包括分析,代数,组合和自守形式的p-adic理论和相关主题,如L-函数。自守形式在数学的许多突破中发挥了关键作用,包括费马大定理的证明(安德鲁·怀尔斯)塞尔猜想(作者:Ehrashekhar Khare,Mark Kisin和Jean-Pierre Win滕贝格),Sato-Tate猜想(作者:托马斯巴内特-兰姆、大卫杰拉蒂、迈克尔哈里斯和理查德泰勒),塞尔的一致性猜想(by Yuri Bilu and Pierre Parent),Monastery Moonshine Conjecture(Borcherds因此获得菲尔兹奖),and the Fundamental Lemma(Ngo Bau Chau因此获得菲尔兹奖).今年研讨会的主题可能包括比安奇,椭圆,雅可比,希尔伯特和西格尔模形式,椭圆曲线和阿贝尔变种,L-函数的特殊值,L-函数和自守形式的p-adic方面,与表示论的联系,模拟模形式,二次形式,以及其他相关的研究领域。网站:http://automorphicformsworkshop.org/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Keaton其他文献
Counting Tamely Ramified Extensions of Local Fields up to Isomorphism
计算局部域的驯化分支扩展至同构
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jim Brown;Robert Cass;K. James;Rodney Keaton;S. Parenti;Daniel Shankman - 通讯作者:
Daniel Shankman
Restrictions of Eisenstein Series and Rankin-Selberg Convolution
Eisenstein级数和Rankin-Selberg卷积的限制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Rodney Keaton;Ameya Pitale - 通讯作者:
Ameya Pitale
Congruence primes for Ikeda lifts and the Ikeda ideal
池田提升和池田理想的同余素数
- DOI:
10.2140/pjm.2015.274.27 - 发表时间:
2015 - 期刊:
- 影响因子:0.6
- 作者:
Jim Brown;Rodney Keaton - 通讯作者:
Rodney Keaton
Level stripping for degree 2 Siegel modular forms
2 级 Siegel 模块化形式的水平剥离
- DOI:
10.4310/mrl.2013.v20.n5.a8 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
Rodney Keaton - 通讯作者:
Rodney Keaton
Explicit Level Lowering for 2-Dimensional Modular Galois Representations
二维模伽罗瓦表示的显式水平降低
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Rodney Keaton - 通讯作者:
Rodney Keaton
Rodney Keaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
2005654 - 财政年份:2020
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1854113 - 财政年份:2019
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1802058 - 财政年份:2018
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Workshop on Automorphic Forms and Related Topics
自守形式及相关主题研讨会
- 批准号:
1601959 - 财政年份:2016
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Building Bridges: 3rd EU/US Summer School and automorphic forms workshop
搭建桥梁:第三届欧盟/美国暑期学校和自守形式研讨会
- 批准号:
1630217 - 财政年份:2016
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
- 批准号:
1407077 - 财政年份:2014
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant
Automorphic Forms Workshop 2014, May 12-16 2014
自守形式研讨会 2014,2014 年 5 月 12-16 日
- 批准号:
1404066 - 财政年份:2014
- 资助金额:
$ 2.1万 - 项目类别:
Standard Grant














{{item.name}}会员




