SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
基本信息
- 批准号:1718787
- 负责人:
- 金额:$ 49.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning technologies hold great promise to revolutionize the way people live and work. However, deep learning systems are inherently vulnerable to adversarial inputs, which are maliciously crafted samples to trigger deep neural networks to misbehave, leading to disastrous consequences in security-critical applications. The fundamental challenges of defending against such attacks stem from their adaptive and variable nature: adversarial inputs are tailored to target deep neural networks, while crafting strategies vary greatly with concrete attacks. This project develops EagleEye, a universal, attack-agnostic defense framework that (i) works effectively against unseen attack variants, (ii) preserves predictive power of deep neural networks, (iii) complements existing defense mechanisms, and (iv) provides comprehensive diagnosis about potential risks in deep learning outputs.In particular, EagleEye leverages a set of invariant properties underlying most attacks, including the "minimality principle": to maximize attack evasiveness, an adversarial input is generated by applying the minimum possible distortion to a legitimate input. By exploiting such properties in a principled manner, EagleEye effectively discriminates adversarial inputs (integrity checking) and even uncovers their correct outputs (truth recovery). The specific research tasks include: (i) identifying inherently distinct properties (differentiators) of legitimate and adversarial inputs, (ii) developing attack-agnostic adversarial input detection methods based on these differentiators, and (iii) analyzing possible countermeasures by adversaries to evade such defenses. This research not only facilitates the adoption of deep learning-powered systems and services, but also enlightens designing and implementing robust machine learning systems in general. New theories and systems developed in this project are integrated into undergraduate and graduate education and used to raise public awareness of the importance of machine learning security. More information about this project can be found at the project homepage: http://x-machine.github.io/project/eagleeye
深度学习技术有望彻底改变人们的生活和工作方式。然而,深度学习系统本质上容易受到对抗性输入的影响,这些输入是恶意制作的样本,可以触发深度神经网络的不当行为,从而在安全关键型应用中导致灾难性后果。防御此类攻击的根本挑战源于其自适应性和可变性:对抗性输入是针对深度神经网络量身定制的,而制定策略则因具体攻击而有很大差异。该项目开发了一个通用的、与攻击无关的防御框架,它(i)有效地对抗看不见的攻击变体,(ii)保留深度神经网络的预测能力,(iii)补充现有的防御机制,(iv)提供对深度学习输出中潜在风险的全面诊断。特别是,该框架利用了一组大多数攻击的不变属性,包括“最小原则”:为了最大化攻击规避,通过将最小可能失真应用于合法输入来生成对抗性输入。通过以有原则的方式利用这些属性,EagleEye有效地区分对抗性输入(完整性检查),甚至发现它们的正确输出(真相恢复)。具体的研究任务包括:(i)识别合法和对抗性输入的固有不同属性(区分器),(ii)基于这些区分器开发攻击不可知的对抗性输入检测方法,以及(iii)分析对手可能采取的对策以规避此类防御。这项研究不仅促进了深度学习驱动的系统和服务的采用,而且还启发了设计和实现健壮的机器学习系统。该项目开发的新理论和系统被整合到本科和研究生教育中,并用于提高公众对机器学习安全重要性的认识。有关此项目的更多信息,请访问项目主页:http://x-machine.github.io/project/eagleeye
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Yuwei Li;S. Ji;Yuan Chen;Sizhuang Liang;Wei-Han Lee;Yueyao Chen;Chenyang Lyu-;Chunming Wu;R. Be
- 通讯作者:Yuwei Li;S. Ji;Yuan Chen;Sizhuang Liang;Wei-Han Lee;Yueyao Chen;Chenyang Lyu-;Chunming Wu;R. Be
DeepClean: Data Cleaning via Question Asking
- DOI:10.1109/dsaa.2018.00039
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Xinyang Zhang-;Yujie Ji;Chanh Nguyen;Ting Wang
- 通讯作者:Xinyang Zhang-;Yujie Ji;Chanh Nguyen;Ting Wang
Integration of Static and Dynamic Code Stylometry Analysis for Programmer De-anonymization
集成静态和动态代码风格分析以实现程序员去匿名化
- DOI:10.1145/3270101.3270110
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Wang, Ningfei;Ji, Shouling;Wang, Ting
- 通讯作者:Wang, Ting
Towards Evaluating the Security of Real-World Deployed Image CAPTCHAs
- DOI:10.1145/3270101.3270104
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Binbin Zhao;Haiqin Weng;S. Ji;Jianhai Chen;Ting Wang;Qinming He;Reheem Beyah
- 通讯作者:Binbin Zhao;Haiqin Weng;S. Ji;Jianhai Chen;Ting Wang;Qinming He;Reheem Beyah
Towards Understanding the Dynamics of Adversarial Attacks
- DOI:10.1145/3243734.3278528
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Yujie Ji;Ting Wang
- 通讯作者:Yujie Ji;Ting Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Wang其他文献
Insight into the Al/N-GaN barrier property to realize high quality n-type Ohmic contact
洞察Al/N-GaN势垒特性,实现高质量n型欧姆接触
- DOI:
10.1016/j.jallcom.2019.152855 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.2
- 作者:
Ting Wang;Zhihua Xiong;Juanli Zhao;Ning Wu;Kun Du;Mingbin Zhou;Lei Ao - 通讯作者:
Lei Ao
A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models
临床前动物模型中自动睡眠-觉醒评分的深度学习方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
V. Svetnik;Ting Wang;Yuting Xu;Bryan J Hansen;Steven V. Fox - 通讯作者:
Steven V. Fox
Comparative Assessment of Polycyclic Aromatic Hydrocarbons ( PAHS ) and Heavy Metals in Catfish from Rivers , Swamp and Commercial Fish Ponds in Oil and Non-Oil Polluted Areas in Rivers And Anambra States
河流和阿南布拉州石油和非石油污染地区河流、沼泽和商业鱼塘中多环芳烃(PAHS)和重金属的比较评估
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jijun Sun;Ting Wang;Jiang Bian;Weiyun Shi;Qingguo Ruan - 通讯作者:
Qingguo Ruan
Dural arteriovenous fistulas with perimedullary venous drainage successfully managed via endovascular electrocoagulation: a case report.
通过血管内电凝成功治疗髓周静脉引流的硬脑膜动静脉瘘:病例报告。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Ting Wang;S. Richard;C. Zhang;Chaohua Wang;Xiaodong Xie - 通讯作者:
Xiaodong Xie
The Mental Health of Older Buddhists After the Wenchuan Earthquake
汶川地震后老年佛教徒的心理健康状况
- DOI:
10.1007/s11089-011-0402-3 - 发表时间:
2012 - 期刊:
- 影响因子:0.8
- 作者:
Xumei Wang;Ting Wang;B. Han - 通讯作者:
B. Han
Ting Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Wang', 18)}}的其他基金
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
2405136 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119331 - 财政年份:2021
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
- 批准号:
1953813 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1910546 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1953893 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1951729 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1846151 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Re-Envisioning Contextual Services and Mobile Privacy in the Era of Deep Learning
CRII:SaTC:重新构想深度学习时代的上下文服务和移动隐私
- 批准号:
1566526 - 财政年份:2016
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Engineering Initiation Award: Effects of Curvature, Pressure, Gradient, and Freestream Turbulence on Reynolds Analogy in Transitional Boundary Layer Flow
工程启动奖:曲率、压力、梯度和自由流湍流对过渡边界层流雷诺类比的影响
- 批准号:
8708843 - 财政年份:1987
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
- 批准号:
2310470 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
- 批准号:
2321649 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant