CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
基本信息
- 批准号:2405136
- 负责人:
- 金额:$ 50.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of today's machine learning (ML)-based systems are not built from scratch, but are "composed" from an array of pre-trained, third-party models. Paralleling other forms of software reuse, reusing models can both speed up and simplify the development of ML-based systems. However, a lack of standardization, regulation, and verification of third-party ML models raises security concerns. In particular, ML models are subject to adversarial attacks in which third-party attackers or model providers themselves might embed hidden behaviors that are triggered by pre-specified inputs. This project aims at understanding the security threats incurred by reusing third-party models as building blocks of ML systems and developing tools to help developers mitigate such threats throughout the lifecycle of ML systems. Outcomes from the project will improve ML security in applications from self-driving cars to authentication in the short term while promoting more principled practices of building and operating ML systems in the long run.One major type of threat incurred by reusing third-party models is model reuse attacks, in which maliciously crafted models ("adversarial models") force host ML systems to malfunction on targeted inputs ("triggers") in a highly predictable manner. This project develops rigorous yet practical methods to proactively detect and remediate such backdoor vulnerabilities. First, it will empirically and analytically investigate the necessary conditions and invariant patterns of model reuse attacks. Second, leveraging these insights, it will develop a chain of mitigation tools that detect potential backdoors, pinpoint triggers, and provide mechanisms to fortify adversarial models against these attacks. Third, it will establish a unified theory of adversarial models and adversarial inputs to deepen more general understanding of adversarial ML. Finally, it will implement all the proposed techniques and system designs in the form of a prototype testbed, which provides a unique research facility for investigating a range of attack and defense techniques. New theories and techniques developed in this project will be integrated into undergraduate and graduate education and used to raise public awareness of the importance of ML security.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今许多基于机器学习(ML)的系统并不是从零开始构建的,而是由一系列预先训练好的第三方模型“组成”的。与其他形式的软件重用类似,重用模型可以加速并简化基于ml的系统的开发。然而,缺乏标准化、监管和第三方ML模型的验证引起了安全问题。特别是,ML模型容易受到对抗性攻击,其中第三方攻击者或模型提供者本身可能嵌入由预先指定的输入触发的隐藏行为。该项目旨在了解重用第三方模型作为机器学习系统的构建块所带来的安全威胁,并开发工具来帮助开发人员在机器学习系统的整个生命周期中减轻此类威胁。该项目的成果将在短期内提高从自动驾驶汽车到身份验证等应用中的ML安全性,同时从长远来看,将促进构建和操作ML系统的更有原则的实践。重用第三方模型引起的一种主要威胁是模型重用攻击,其中恶意制作的模型(“对抗性模型”)以高度可预测的方式迫使主机ML系统在目标输入(“触发器”)上发生故障。该项目开发了严格而实用的方法来主动检测和修复此类后门漏洞。首先,对模型重用攻击的必要条件和不变模式进行实证分析研究。其次,利用这些见解,它将开发一系列缓解工具,以检测潜在的后门,查明触发因素,并提供机制来加强对抗这些攻击的模型。第三,它将建立对抗性模型和对抗性输入的统一理论,以加深对对抗性机器学习的更一般的理解。最后,它将以原型测试平台的形式实现所有提出的技术和系统设计,这为调查一系列攻击和防御技术提供了独特的研究设施。本项目开发的新理论和技术将被整合到本科和研究生教育中,并用于提高公众对机器学习安全重要性的认识。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Wang其他文献
Insight into the Al/N-GaN barrier property to realize high quality n-type Ohmic contact
洞察Al/N-GaN势垒特性,实现高质量n型欧姆接触
- DOI:
10.1016/j.jallcom.2019.152855 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.2
- 作者:
Ting Wang;Zhihua Xiong;Juanli Zhao;Ning Wu;Kun Du;Mingbin Zhou;Lei Ao - 通讯作者:
Lei Ao
A Deep Learning Approach for Automated Sleep-Wake Scoring in Pre-Clinical Animal Models
临床前动物模型中自动睡眠-觉醒评分的深度学习方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
V. Svetnik;Ting Wang;Yuting Xu;Bryan J Hansen;Steven V. Fox - 通讯作者:
Steven V. Fox
Comparative Assessment of Polycyclic Aromatic Hydrocarbons ( PAHS ) and Heavy Metals in Catfish from Rivers , Swamp and Commercial Fish Ponds in Oil and Non-Oil Polluted Areas in Rivers And Anambra States
河流和阿南布拉州石油和非石油污染地区河流、沼泽和商业鱼塘中多环芳烃(PAHS)和重金属的比较评估
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jijun Sun;Ting Wang;Jiang Bian;Weiyun Shi;Qingguo Ruan - 通讯作者:
Qingguo Ruan
Dural arteriovenous fistulas with perimedullary venous drainage successfully managed via endovascular electrocoagulation: a case report.
通过血管内电凝成功治疗髓周静脉引流的硬脑膜动静脉瘘:病例报告。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
Ting Wang;S. Richard;C. Zhang;Chaohua Wang;Xiaodong Xie - 通讯作者:
Xiaodong Xie
The Mental Health of Older Buddhists After the Wenchuan Earthquake
汶川地震后老年佛教徒的心理健康状况
- DOI:
10.1007/s11089-011-0402-3 - 发表时间:
2012 - 期刊:
- 影响因子:0.8
- 作者:
Xumei Wang;Ting Wang;B. Han - 通讯作者:
B. Han
Ting Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Wang', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119331 - 财政年份:2021
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
- 批准号:
1953813 - 财政年份:2019
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1953893 - 财政年份:2019
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1951729 - 财政年份:2019
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
III: Small: Usable Interpretability
III:小:可用的可解释性
- 批准号:
1910546 - 财政年份:2019
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
CAREER: Trustworthy Machine Learning from Untrusted Models
职业:从不可信模型中进行值得信赖的机器学习
- 批准号:
1846151 - 财政年份:2019
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Attack-Agnostic Defenses against Adversarial Inputs in Learning Systems
SaTC:核心:小:针对学习系统中的对抗性输入的与攻击无关的防御
- 批准号:
1718787 - 财政年份:2017
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
CRII: SaTC: Re-Envisioning Contextual Services and Mobile Privacy in the Era of Deep Learning
CRII:SaTC:重新构想深度学习时代的上下文服务和移动隐私
- 批准号:
1566526 - 财政年份:2016
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Engineering Initiation Award: Effects of Curvature, Pressure, Gradient, and Freestream Turbulence on Reynolds Analogy in Transitional Boundary Layer Flow
工程启动奖:曲率、压力、梯度和自由流湍流对过渡边界层流雷诺类比的影响
- 批准号:
8708843 - 财政年份:1987
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
相似海外基金
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Trustworthy Machine Learning by Demonstration
值得信赖的机器学习演示
- 批准号:
10067903 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Collaborative R&D
Web Scale Trustworthy Data for Machine Learning
用于机器学习的网络规模可信数据
- 批准号:
10065617 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Collaborative R&D
Travel: NSF Student Travel Grant for 2023 IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML)
旅行:2023 年 IEEE 安全可信机器学习会议 (IEEE SaTML) 的 NSF 学生旅行补助金
- 批准号:
2317300 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
- 批准号:
10068410 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Collaborative R&D
CAREER: Human-Machine Supervision Cycle for Trustworthy Biometrics
职业:值得信赖的生物识别技术的人机监督周期
- 批准号:
2237880 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Continuing Grant
Glass-box Deep Machine Perception for Trustworthy Artificial Intelligence
玻璃盒深度机器感知,实现值得信赖的人工智能
- 批准号:
DE230101058 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Discovery Early Career Researcher Award
Travel: NSF Student Travel Grant for 2023 IEEE Conference on Secure and Trustworthy Machine Learning (IEEE SaTML)
旅行:2023 年 IEEE 安全可信机器学习会议 (IEEE SaTML) 的 NSF 学生旅行补助金
- 批准号:
2233869 - 财政年份:2023
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization
合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践
- 批准号:
2207052 - 财政年份:2022
- 资助金额:
$ 50.99万 - 项目类别:
Standard Grant