NSF-ANR MCB/PHY: Elucidating Plant Vascular Function and Dynamics in Planta and on Chip

NSF-ANR MCB/PHY:阐明植物体内和芯片上的植物血管功能和动力学

基本信息

  • 批准号:
    2412533
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

The function of vascular plants relies both on active and passive transport phenomena driven through two coupled vascular systems: transpiration moves water from the roots to the leaves through the xylem to maintain hydration and transfer nutrients, and osmosis drives the flow through the phloem carrying photosynthesized sugars from the leaves throughout the plant for growth and storage. Both flows are also hypothesized to mediate long-distance biochemical signaling within the plant that coordinate whole-plant function and represent important targets for crop improvement for sustainable agriculture. This project unites expertise on physicochemistry, device engineering, and plant biology to develop new tools for interrogating these processes and new fundamental biophysical and biological understanding of them. Many fundamental questions remain on the physiological mechanisms of operation and functional roles of these transport processes, particularly relative to the phloem and its coupling to the xylem and other tissues: 1) the biophysics of the loading and unloading of sugars, water, and signaling molecules to and from the phloem; 2) the dynamics of phloem transport as a function of biotic (e.g., photosynthetic rate and localized tissue growth) and abiotic (e.g., diurnal variations in water status) processes; and 3) the coordination of these processes at the whole-organism scale. Progress on these topics has been hindered by the lack of experimental tools with which to investigate hypotheses across scales, from local membrane-mediated to system-scale processes, either in vitro or in planta. To address these questions, an international team of researchers in the USA and France will work together to develop the first synthetic system that allows for recapitulation of the full, coupled operation of the xylem and phloem systems to test a diversity of biophysical hypotheses on the mechanisms and function of plant vasculature. The team will also develop new sensors for sensing of vascular transport processes, in-plant; and inform and confront in vitro experiments with biophysical and biochemical experiments in vivo. This effort will provide new insights into the biology and biophysics of plant vascular function and create new tools for basic and applied research by others.The outcomes of this project will serve the broader community scientifically and technologically by creating new microfluidic devices and functionalities, new tools for in-plant measurement, and new understanding of the fundamentals of whole-plant integration of resources and signals. These tools and understanding could translate into strategies for crop improvement and management, as well as into other industries, including manufacturing. This international, cross-disciplinary project will provide rich training opportunities to graduate students and post-doctoral scholars at both institutions in the US and France. The Cornell-based team will create and deliver experiential curriculum related to this project for high school students from underserved communities and mentor undergraduate summer students through Research Experience for Undergraduates programs on these research themes. This collaborative US/France project is supported by the US National Science Foundation (NSF) and the French Agence Nationale de la Recherche (ANR), where NSF funds the US investigators and ANR funds the partners in France. The US investigators are jointly funded by the Physics of Living Systems program in the Directorate for Mathematical and Physical Sciences and the Molecular Biophysics program/Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
维管植物的功能依赖于通过两个耦合的维管系统驱动的主动和被动运输现象:蒸腾作用将水从根通过木质部移动到叶子以保持水合作用和转移营养物质,渗透作用驱动通过韧皮部的流动,将光合作用的糖从叶子带到整个植物中用于生长和储存。这两种流动也被假设为介导植物内的长距离生化信号传导,协调整株植物的功能,并代表可持续农业作物改良的重要目标。该项目结合了物理化学,设备工程和植物生物学方面的专业知识,以开发新的工具来询问这些过程以及对它们的新的基本生物物理和生物学理解。关于这些运输过程的操作和功能作用的生理机制仍然存在许多基本问题,特别是与韧皮部及其与木质部和其他组织的耦合有关:1)糖、水和信号分子向韧皮部的装载和从韧皮部的卸载的生物物理学; 2)韧皮部运输的动力学作为生物的功能(例如,光合速率和局部组织生长)和非生物(例如,水分状况的日变化)过程; 3)这些过程在整个生物体尺度上的协调。这些主题的进展一直受到阻碍,缺乏实验工具来调查跨尺度的假设,从局部膜介导的系统规模的过程,无论是在体外或在植物。为了解决这些问题,美国和法国的一个国际研究小组将共同开发第一个合成系统,该系统允许重现木质部和韧皮部系统的完整耦合操作,以测试关于植物脉管系统机制和功能的多种生物物理假设。该团队还将开发新的传感器,用于在植物中感知血管运输过程;并通过体内生物物理和生化实验来告知和对抗体外实验。这一努力将为植物维管功能的生物学和生物物理学提供新的见解,并为其他人的基础和应用研究创造新的工具。该项目的成果将通过创造新的微流体设备和功能,新的植物内测量工具以及对整株植物资源和信号整合基础的新理解,为更广泛的科学和技术社区服务。这些工具和理解可以转化为作物改良和管理战略,以及包括制造业在内的其他行业。这个国际性的跨学科项目将为美国和法国两个机构的研究生和博士后学者提供丰富的培训机会。康奈尔大学的团队将为来自服务不足社区的高中生创建和提供与该项目相关的体验式课程,并通过这些研究主题的本科生研究经验项目指导本科暑期学生。这个美国/法国合作项目得到了美国国家科学基金会(NSF)和法国国家研究机构(ANR)的支持,NSF资助美国研究人员,ANR资助法国的合作伙伴。美国的研究人员是由数学和物理科学理事会的生命系统物理学项目和生物科学理事会的分子生物物理学项目/分子和细胞生物科学部共同资助的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abraham Stroock其他文献

Abraham Stroock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abraham Stroock', 18)}}的其他基金

STC: Center for Research On Programmable Plant Systems
STC:可编程工厂系统研究中心
  • 批准号:
    2019674
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
PFI:AIR - TT: Development of Tools and Methods for Extended Maturity Analysis of Concrete
PFI:AIR - TT:混凝土扩展成熟度分析工具和方法的开发
  • 批准号:
    1500261
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
International Collaboration in Chemistry: Origins of the anomalous thermodynamics and dynamics of metastable liquid water
国际化学合作:亚稳态液态水的反常热力学和动力学的起源
  • 批准号:
    0924463
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Studies to Advance the Science and Engineering of Water at Negative Pressures
职业:推进负压水科学与工程的基础研究
  • 批准号:
    0747993
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MRI: Development of a 4D micro/nano-scale defocused particle tracking (DPT) imaging technique and its applications in nanobiotechnology
MRI:4D微/纳米级散焦粒子追踪(DPT)成像技术的发展及其在纳米生物技术中的应用
  • 批准号:
    0619626
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SST: Optimizing Microfluidic Transport and Magnetic Sensing for Detection of Detection of Pseudomonas Syringae
SST:优化微流体传输和磁传感以检测丁香假单胞菌
  • 批准号:
    0529042
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

花青素还原酶(ANR)在荔枝果皮褐变底物积累中的作用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ANR与LAR在茶树表型儿茶素生物合成中的作用机制研究
  • 批准号:
    31902070
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
  • 批准号:
    2214925
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation
NSF-ANR 合作研究:终末红细胞剜除机制
  • 批准号:
    2210366
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NSF-ANR: Cytochrome nanowires: secretion, assembly and function in ultrafast electron transfer by microbial biofilms
NSF-ANR:细胞色素纳米线:微生物生物膜超快电子转移的分泌、组装和功能
  • 批准号:
    2210473
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF-ANR: Physics of chromosomes through mechanical perturbations
NSF-ANR:通过机械扰动研究染色体物理学
  • 批准号:
    2210558
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
  • 批准号:
    2315396
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR Mechanisms of Terminal Erythroid Enucleation
合作研究:NSF-ANR 终末红细胞剜除机制
  • 批准号:
    2210369
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CISE-ANR: SHF: Small: Scenario-based Formal Proofs for Concurrent Software
CISE-ANR:SHF:小型:并发软件的基于场景的形式化证明
  • 批准号:
    2315363
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CISE-ANR: HCC: Small: Omnidirectional BatVision: Learning How to Navigate from Cell Phone Audios
CISE-ANR:HCC:小型:全向 BatVision:学习如何通过手机音频进行导航
  • 批准号:
    2215542
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了