Design of Heteroanionic Materials

杂阴离子材料的设计

基本信息

  • 批准号:
    2413680
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYMaterials containing transition metals and oxygen are used in many different technologies because of their useful properties, ranging from materials that can change their electrical polarization (ferroelectricity) to materials that can conduct electricity with no resistance at high temperatures (high-temperature superconductivity). These unique properties arise from the polarizable oxide ions. An important national priority is accelerating the discovery of new compounds, especially those with more than one type of anion instead of multiple cations. These “multi-anion” or heteroanionic materials, in which abundant elements like nitrogen or fluorine substitute for some of the oxygen ions, can enable superior functionality that is difficult to achieve in simpler oxide materials. To that end, this award supports research that will provide new knowledge about how the atomic scale structures of these materials govern their macroscopic properties. The project will establish design approaches that account for strategies to control the ordering of the different anion types. This will guide the choice of which chemical elements and atomic arrangements to use to obtain desired electronic, magnetic, and optical properties crucial for advancing current and future technologies.Additionally, this award supports teaching and training students at multiple levels. The capabilities for new material discovery will be integrated into curricula to broaden participation of underrepresented students in STEM fields. The principal investigator and group members will participate in public outreach events. Undergraduate and graduate students will also gain interdisciplinary training and experiential opportunities, contributing to the development of a skilled scientific workforce. The PI will develop accessible educational materials, including low-cost high-fidelity 3D printed models to impart critical skills and improve equity for high-school students. These concerted efforts will empower students, teachers, and workers with proficiencies needed for high-tech globally competitive careers.TECHNICAL SUMMARYHeteroanionic materials, in which one uses anion substitution of inherently earth-abundant elements (N, F, etc.) into oxides, enable the design of superior functionality that remains elusive in chemically simpler homoanionic compounds. Structure-property relationships, however, are poorly developed within this nascent field, intensified by a minimal understanding of anion order-disorder effects on physical properties. The project goals are to (1) employ a heteroanionic materials design scheme to understand the interplay among local and extended crystal structure, anion order, and electronic and magnetic responses in new regimes; and to (2) advance new heteroanionic materials exhibiting cooperative phenomena superior to those found in currently available homoanionic materials. This project will pursue design and discovery using a computational strategy, which integrates phenomenological modeling, tight-binding models, ab initio simulations, and symmetry analysis with state-of-the-art electronic structure methods to build both descriptive and predictive design models. The project also leverages substantial collaborative experimentation, focusing on synthesis and structure-property characterization on predicted compounds, guided by first-principles stability and synthesizability assessments. The PI has ongoing collaborations with leading experts in multianion synthesis and characterization; understanding derived here will stimulate experimental methods and vice versa. Success in the project will benefit society by advancing a scientific framework for tuning functionality through multiple sustainable anions. These insights may contribute instrumental in the development of electrical, optical, magnetic, and quantum components for microelectronics, catering to diverse energy-efficient computing, quantum information technologies, and communication systems that serve as major drivers of U.S. economic growth and leadership.This project synergistically integrates research and education to broaden participation of underrepresented groups in STEM fields. It develops innovative undergraduate and graduate curricula incorporating the project’s cutting-edge materials discovery capabilities. By participating directly, students receive hands-on, interdisciplinary training. Additionally, the PI and their team will create accessible, low-cost educational tools and 3D printed modeling kits aligned with Next Generation Science Standards. These resources will help underprivileged high school students build essential STEM competencies. Through this multifaceted approach, the project aims to empower and equip a diverse new generation of students, teachers, and workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包含过渡金属和氧的材料由于其有用的特性被用于许多不同的技术,从可以改变其电极化的材料(铁电性)到可以在高温下无电阻导电的材料(高温超导性)。这些独特的性质来自于可极化的氧化离子。一个重要的国家优先事项是加速新化合物的发现,特别是那些具有多种阴离子而不是多种阳离子的化合物。这些“多阴离子”或异阴离子材料,其中丰富的氮或氟等元素代替了一些氧离子,可以实现更简单的氧化物材料难以实现的优越功能。为此,该奖项支持的研究将提供有关这些材料的原子尺度结构如何控制其宏观性质的新知识。该项目将建立设计方法,说明控制不同阴离子类型排序的策略。这将指导选择使用哪些化学元素和原子排列来获得所需的电子、磁性和光学特性,这对推进当前和未来的技术至关重要。此外,该奖项支持多个层次的教学和培训学生。发现新材料的能力将被纳入课程,以扩大代表性不足的学生在STEM领域的参与。首席研究员和小组成员将参加公众宣传活动。本科生和研究生也将获得跨学科的培训和体验机会,为培养熟练的科学人才做出贡献。PI将开发可访问的教育材料,包括低成本高保真3D打印模型,以传授关键技能并提高高中学生的公平性。这些协调一致的努力将使学生、教师和工人熟练掌握具有全球竞争力的高科技职业所需的技能。技术概述:在异阴离子材料中,人们使用阴离子取代天然丰富的元素(N, F等)成为氧化物,使设计具有在化学上更简单的同阴离子化合物中难以实现的优越功能成为可能。然而,在这个新生的领域中,结构-性质关系发展得很差,对阴离子有序-无序对物理性质的影响的最小理解加剧了这种关系。该项目的目标是:(1)采用异质阴离子材料设计方案来了解新体制下局部和扩展晶体结构、阴离子顺序以及电子和磁性响应之间的相互作用;(2)提出新的异阴离子材料,其协同现象优于现有的同阴离子材料。该项目将使用计算策略进行设计和发现,该策略将现象学建模、紧密结合模型、从头算模拟和对称分析与最先进的电子结构方法相结合,以建立描述性和预测性设计模型。该项目还利用大量的合作实验,以第一性原理稳定性和可合成性评估为指导,重点关注预测化合物的合成和结构性质表征。PI正在与多阴离子合成和表征方面的领先专家进行合作;这里得到的理解将刺激实验方法,反之亦然。该项目的成功将通过推进通过多种可持续阴离子调节功能的科学框架来造福社会。这些见解可能有助于电子、光学、磁性和量子微电子元件的发展,迎合各种节能计算、量子信息技术和通信系统,这些系统是美国经济增长和领导地位的主要驱动力。该项目将研究和教育协同结合,以扩大代表性不足群体在STEM领域的参与。它开发了创新的本科和研究生课程,结合了项目的尖端材料发现能力。通过直接参与,学生们接受了实际操作的跨学科培训。此外,PI及其团队将创建可访问的低成本教育工具和符合下一代科学标准的3D打印建模工具包。这些资源将帮助贫困的高中生建立基本的STEM能力。通过这种多方面的方法,该项目旨在增强和装备多样化的新一代学生、教师和工人。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324173
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
  • 批准号:
    2011208
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729303
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant

相似海外基金

Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
  • 批准号:
    DGECR-2022-00014
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Launch Supplement
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
  • 批准号:
    RGPIN-2022-04779
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
  • 批准号:
    2011208
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了