DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions

DMREF:合作研究:金属-绝缘体转变的结构基因组

基本信息

  • 批准号:
    1729303
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical Description: The world has seen an enormous increase in computing power, but the current path forward for the semiconductor industry is beset with roadblocks. A different strategy for a future generation of electronic devices is based on materials that exist in multiple electronic states. A new generation of electronic materials are required for this purpose, as are the means for switching between multiple electronic states. The fundamental science that is the focus of this project is centered on the sudden change in the electrical properties of certain materials when they are switched through a so-called metal-to-insulator transition by an external trigger. On one side of the transition, the material behaves like copper metal, while on the other side, it behaves like insulating wood. The project goal is to design and discover materials exhibiting such metal-to-insulator transitions that enable room-temperature operation and that display large changes in the key property of interest; the electrical resistivity. The strategy is to control properties by structural design at the atomic scale. The approach employs a tightly integrated combination of experiment, theory, and data-mining of the literature, that would enable new insights to emerge and aid in the design of desirable materials. This project will deliver a research workflow with a suite of tools to enable assessment and experimental validation of new concepts for the discovery of key materials. The project will articulate protocols for selecting high-performing materials, leading to an expanded palette of compounds that could impact future technologies. The teaching and training of students and the discovery capabilities of the project are interwoven, and aimed at broadening participation through the involvement of the investigators and their group members in public outreach events. The development of modules for undergraduate and graduate courses and the involvement of students in interdisciplinary team environments are intrinsic to project plan. The project will yield a plethora of new and mined data on a range of oxides and new computational materials approaches. These will be aggregated into open-access databases on public portals.Technical description: This project will pursue discovery of the atomic-level genetic code of materials displaying metal-to-insulator transitions through approaches that establish links between unit cell level crystal structure and the macroscopic electronic response, profiting from a coupling of theory, data, and comprehensive experimentation. At the present time, the essential data and structure-electronic function relationships to decipher the genetic code (generic descriptors) of metal-to-insulator transitions do not exist in a format which permits predictive synthesis. The project?s significance is that it recasts the problem into one of atomic structure, focusing on the role of different kinds of structural distortions, notably, breathing modes, Jahn-Teller distortions, and Peierls-like instabilities across a broad range of structure types and chemistries. The project will generate and collect a range of data that will permit the mapping of electronic interactions into atomic features, applying informatics-based methods to enable supervised and unsupervised learning. The project will articulate predictive rules and protocols for selecting high-performing materials, leading to an expanded palette of compounds that could impact technologies beyond electronics. The teaching and training of students at multiple levels and the discovery capabilities of the project are interwoven and aimed at broadening participation by through public outreach events, through the development of modules for undergraduate and graduate courses; and finally, by involving students in interdisciplinary team environments. The project will yield a plethora of new data on a range of oxides and new computational materials approaches. These will be aggregated into databases on public web-portals using a new portable file format designed for materials data. New methods of data visualization will allow external users to interact, query, and analyze the data for aims beyond those proposed herein. Data-driven models and informatics workflows for generating quantitative models for metal-to-insulator performance will be hosted with the aforementioned data and visualization tools on the MIST: Metals and Insulators by Structural Tuning platform. The PIs also plan to release MIST as open source and build a user community around the platform by ensuring that interested researchers are able to contribute to the MIST codebase. This will allow a wider growth of the project. This aspect is of special interest to the software cluster in the Office of Advanced Cyberinfrastructure, which has provided co-funding for this award. Advances in synthesis, theory, and characterization will strengthen the scientific capabilities and workforce by allowing students and academic or industrial researchers to employ the formulated structure-property relationships for educational and research purposes.
非技术描述:世界已经看到了计算能力的巨大增长,但半导体行业目前的前进道路充满了障碍。未来一代电子器件的不同策略是基于以多种电子状态存在的材料。为此,需要新一代的电子材料,以及在多种电子状态之间切换的方法。作为该项目重点的基础科学集中在某些材料的电特性的突然变化上,当它们通过外部触发器通过所谓的金属到绝缘体转变时。在过渡的一侧,材料表现得像铜金属,而在另一侧,它表现得像绝缘木材。该项目的目标是设计和发现表现出这种金属到绝缘体转变的材料,这些材料能够在室温下工作,并且在感兴趣的关键属性中显示出很大的变化;电阻率。该策略是通过原子尺度的结构设计来控制性能。该方法采用了实验,理论和文献数据挖掘的紧密结合,这将使新的见解出现,并有助于设计理想的材料。该项目将提供一个研究工作流程,其中包括一套工具,以评估和实验验证发现关键材料的新概念。该项目将阐明选择高性能材料的协议,从而扩大可能影响未来技术的化合物组合。学生的教学和培训与项目的发现能力是相互交织的,目的是通过调查人员及其小组成员参与公共外联活动来扩大参与。本科生和研究生课程模块的开发以及学生在跨学科团队环境中的参与是项目计划的本质。该项目将产生大量关于一系列氧化物和新计算材料方法的新数据和挖掘数据。技术说明:本项目将通过理论、数据和综合实验相结合的方法,在单胞水平晶体结构和宏观电子响应之间建立联系,探索显示金属-绝缘体转变的材料的原子水平遗传密码。目前,破译金属-绝缘体转换的遗传密码(通用描述符)的基本数据和结构-电子功能关系不存在允许预测合成的格式。项目?的意义在于,它将问题重新转换为原子结构,重点关注不同类型的结构扭曲的作用,特别是呼吸模式,Jahn-Teller扭曲和Peierls类不稳定性在广泛的结构类型和化学中的作用。该项目将生成和收集一系列数据,这些数据将允许将电子相互作用映射到原子特征,应用基于信息学的方法来实现监督和无监督学习。该项目将阐明选择高性能材料的预测规则和协议,从而扩大化合物的范围,从而影响电子产品以外的技术。该项目的教学和学生在多个层次的培训和发现能力是相互交织的,旨在通过公共宣传活动,通过本科和研究生课程模块的开发扩大参与;最后,通过让学生参与跨学科团队环境。该项目将产生大量关于一系列氧化物和新计算材料方法的新数据。这些数据将使用为材料数据设计的新的便携式文件格式,汇集到公共门户网站的数据库中。数据可视化的新方法将允许外部用户交互、查询和分析数据,以实现本文提出的目标之外的目标。用于生成金属-绝缘体性能定量模型的数据驱动模型和信息学工作流程将与上述数据和可视化工具一起托管在MIST:金属和绝缘体结构调整平台上。PI还计划将MIST作为开源发布,并通过确保感兴趣的研究人员能够为MIST代码库做出贡献,围绕该平台建立一个用户社区。这将使该项目得到更广泛的发展。高级网络基础设施办公室的软件集群对此特别感兴趣,该办公室为该奖项提供了共同资助。在合成,理论和表征方面的进步将通过允许学生和学术或工业研究人员将制定的结构-性质关系用于教育和研究目的来加强科学能力和劳动力。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncorrelated Bi off-centering and the insulator-to-metal transition in ruthenium A2Ru2O7 pyrochlores
钌 A2Ru2O7 烧绿石中不相关的 Bi 偏心和绝缘体到金属的转变
  • DOI:
    10.1103/physrevmaterials.3.095003
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Laurita, Geneva;Puggioni, Danilo;Hickox-Young, Daniel;Rondinelli, James M.;Gaultois, Michael W.;Page, Katharine;Lamontagne, Leo K.;Seshadri, Ram
  • 通讯作者:
    Seshadri, Ram
Featureless adaptive optimization accelerates functional electronic materials design
无特征自适应优化加速功能电子材料设计
  • DOI:
    10.1063/5.0018811
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Wang, Yiqun;Iyer, Akshay;Chen, Wei;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
High-pressure synthesis of the BiVO3 perovskite
  • DOI:
    10.1103/physrevmaterials.3.064411
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    R. A. Klein;A. Altman;R. Saballos;J. P. Walsh;A. Tamerius;Y. Meng;D. Puggioni;S. Jacobsen;J. Ron
  • 通讯作者:
    R. A. Klein;A. Altman;R. Saballos;J. P. Walsh;A. Tamerius;Y. Meng;D. Puggioni;S. Jacobsen;J. Ron
Symbolic regression in materials science
  • DOI:
    10.1557/mrc.2019.85
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Wang, Yiqun;Wagner, Nicholas;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
Learning from Correlations Based on Local Structure: Rare-Earth Nickelates Revisited
  • DOI:
    10.1021/acs.jcim.8b00411
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Wagner, Nicholas;Puggioni, Danilo;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Design of Heteroanionic Materials
杂阴离子材料的设计
  • 批准号:
    2413680
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324173
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
  • 批准号:
    2011208
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了