Structure and Function of Heteroanionic Materials

杂阴离子材料的结构与功能

基本信息

  • 批准号:
    2011208
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYTwenty-first century microelectronic and battery technologies rely on components consisting of transition metal oxides that can accommodate reversible changes in the distribution of their electrons. This award supports theoretical and computational research on the fundamental science of heteroanionic materials, which are compounds consisting of more than one anion beyond oxygen such as oxynitrides, oxyfluorides, and oxysulfides. These compounds benefit from the stability of oxide materials, but have the added advantage of tunable electronic, magnetic, and topological properties owing to the additional secondary anion, which allows for greater control over the electron distribution.The project goals are to design, discover, and control the properties of heteroanionic materials displaying ferroelectricity, metal-insulator transitions, and topological band structures by establishing links between crystal structure and anion chemistry, profiting from a coupling of theory, simulation, and comprehensive experimentation. The project utilizes quantum-mechanical based calculations to establish model frameworks and knowledge that are both descriptive and predictive. These models and approaches may be expanded to materials beyond heteroanionic materials, enabling an unprecedented expansion of compounds with varying electronic functions for future technologies.The teaching and training of students and the discovery capabilities of the project are also interwoven and aimed at broadening participation of underrepresented students in Science Technology Engineering and Mathematics disciplines through public outreach events, through undergraduate and graduate curriculum development, and by involving students with experiential and interdisciplinary training. The educational impact extends to high-school students by developing materials physics/engineering modules that meet Next Generation Science Standards in concert with high school teachers.TECHNICAL SUMMARYComplex transition metal oxides are utilized in a variety of technologies owing to their properties ranging from ferroelectricity to high-temperature superconductivity supported by polarizable oxide anions. The design, discovery, and control of new transition metal compounds, particularly those with multiple anions (heteroanionic materials) rather than multiple cations (homoanionic oxides with a single anion), with novel properties and superior performance are crucial to the continued development of present and future technologies. This award supports theoretical and computational research on the fundamental science of heteroanionic materials such as oxynitrides, oxyfluorides, and oxysulfides.The project goals are to implement and extend a heteroanionic materials design scheme for understanding the complex interplay among atomic structure, anion order, and band structure on novel electronic and quantum states and to advance new heteroanionic materials exhibiting superior functionalities and/or responses not found in homoanionic materials. The project utilizes a computational strategy, which integrates group theoretical techniques, derivative-structure tools, and density functional theory, to understand the electronic and optical properties of oxynitrides, oxyfluorides, and oxysulfides within three thrusts focused on (i) geometric and chemical control of noncentrosymmetry for acentric function; (ii) probing metal-insulator transition mechanisms for materials discovery; and (iii) novel routes to anion-ordered topological semimetals. The project will deliver new knowledge to facilitate the selection and design of materials with tunable electronic states derived from multiple anions. It benefits society by advancing the repertoire of structure-based design strategies to control electronic properties, which could lead to discovery of reconfigurable materials for low-power and brain-inspired microelectronics, transparent optoelectronics, and quantum information systems. In addition, educational goals of the project include the teaching and training of students at multiple levels and broadening STEM participation by underrepresented students. These goals extend to high-school students by developing materials physics/engineering modules in concert with high school teachers that meet Next Generation Science Standards. These efforts will impact the next-generation workforce by endowing students and teachers problem-solving skills to be success in globally competitive careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述21世纪的微电子和电池技术依赖于由过渡金属氧化物组成的组件,这些组件可以适应其电子分布的可逆变化。该奖项支持杂阴离子材料基础科学的理论和计算研究,杂阴离子材料是由氧以外的一种以上阴离子组成的化合物,如氮氧化物,氟氧化物和硫氧化物。这些化合物受益于氧化物材料的稳定性,但由于额外的次级阴离子,这些化合物具有可调的电子,磁性和拓扑性质的额外优势,这允许更好地控制电子分布。项目目标是设计,发现和控制具有铁电性,金属-绝缘体转变,通过建立晶体结构和阴离子化学之间的联系,从理论,模拟和综合实验的耦合中获益。该项目利用基于量子力学的计算来建立描述性和预测性的模型框架和知识。这些模型和方法可能会扩展到杂阴离子材料之外的材料,从而使具有不同电子功能的化合物在未来技术中得到前所未有的扩展。该项目的教学和培训以及学生的发现能力也是相互交织的,旨在通过公共宣传活动扩大科学技术工程和数学学科中代表性不足的学生的参与,通过本科和研究生课程的开发,并通过让学生参与体验和跨学科的培训。通过与高中教师合作开发符合下一代科学标准的材料物理/工程模块,教育影响延伸到高中学生。技术概述复杂的过渡金属氧化物由于其从铁电性到由可极化的氧化物阴离子支持的高温超导性的性质而被用于各种技术。设计、发现和控制新的过渡金属化合物,特别是具有多个阴离子(杂阴离子材料)而不是具有多个阳离子(具有单个阴离子的同阴离子氧化物)的过渡金属化合物,其具有新颖的性质和上级性能,对于当前和未来技术的持续发展至关重要。该奖项支持氮氧化物、氟氧化物和硫氧化物等杂阴离子材料基础科学的理论和计算研究。项目目标是实施和扩展杂阴离子材料设计方案,以了解原子结构、阴离子有序性、和能带结构,并发展显示出上级功能性和/或或在同阴离子材料中未发现的响应。该项目利用计算策略,结合群论技术,衍生结构工具和密度泛函理论,在三个重点内理解氮氧化物,氟氧化物和硫氧化物的电子和光学性质:(i)非中心对称性的几何和化学控制,以实现非中心功能;(ii)探测金属-绝缘体转变机制,以发现材料;和(iii)阴离子有序拓扑半金属的新途径。该项目将提供新的知识,以促进材料的选择和设计与可调电子状态来自多种阴离子。它通过推进基于结构的设计策略来控制电子特性,从而使社会受益,这可能导致发现用于低功耗和大脑启发的微电子学,透明光电子学和量子信息系统的可重构材料。此外,该项目的教育目标包括在多个层次上对学生进行教学和培训,并扩大代表性不足的学生对STEM的参与。这些目标通过与符合下一代科学标准的高中教师合作开发材料物理/工程模块扩展到高中学生。这些努力将通过赋予学生和教师解决问题的技能来影响下一代劳动力,从而在具有全球竞争力的职业生涯中取得成功。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Heterostructures to Solid‐Solutions: Structural Tunability in Mixed Halide Perovskites
从异质结构到固体解决方案:混合卤化物钙钛矿的结构可调性
  • DOI:
    10.1002/adma.202205923
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Shin, Donghoon;Lai, Minliang;Shin, Yongjin;Du, Jingshan S.;Jibril, Liban;Rondinelli, James M.;Mirkin, Chad A.
  • 通讯作者:
    Mirkin, Chad A.
Pressure effects on magnetism in Ca2Mn2O5 -type ferrites and manganites
  • DOI:
    10.1103/physrevb.102.104426
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yongjin Shin;J. Rondinelli
  • 通讯作者:
    Yongjin Shin;J. Rondinelli
Strain-Induced Anion-Site Occupancy in Perovskite Oxyfluoride Films
  • DOI:
    10.1021/acs.chemmater.0c04793
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jiayi Wang;Yongjin Shin;J. Paudel;J. Grassi;R. Sah;Weibing Yang;E. Karapetrova;A. Zaidan;V. Strocov;C. Klewe;P. Shafer;A. Gray;J. Rondinelli;S. May
  • 通讯作者:
    Jiayi Wang;Yongjin Shin;J. Paudel;J. Grassi;R. Sah;Weibing Yang;E. Karapetrova;A. Zaidan;V. Strocov;C. Klewe;P. Shafer;A. Gray;J. Rondinelli;S. May
Hybrid improper antiferroelectricity—New insights for novel device concepts
混合不当反铁电——新颖器件概念的新见解
  • DOI:
    10.1557/adv.2020.450
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Lu, Xue-Zeng;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
Low-energy electronic structure of perovskite and Ruddlesden-Popper semiconductors in the Ba-Zr-S system probed by bond-selective polarized x-ray absorption spectroscopy, infrared reflectivity, and Raman scattering
  • DOI:
    10.1103/physrevb.105.195203
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kevin Ye;Nathan Z. Koocher;Stephen Filippone;Shanyuan Niu;Boyang Zhao;M. Yeung;S. Bone;Adam J. Robinson;P. Vora;A. Schleife;Long Ju;A. Boubnov;J. Rondinelli;J. Ravichandran;R. Jaramillo
  • 通讯作者:
    Kevin Ye;Nathan Z. Koocher;Stephen Filippone;Shanyuan Niu;Boyang Zhao;M. Yeung;S. Bone;Adam J. Robinson;P. Vora;A. Schleife;Long Ju;A. Boubnov;J. Rondinelli;J. Ravichandran;R. Jaramillo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Design of Heteroanionic Materials
杂阴离子材料的设计
  • 批准号:
    2413680
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324173
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729303
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant

相似国自然基金

原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Doctoral Dissertation Research: Assessing the chewing function of the hyoid bone and the suprahyoid muscles in primates
博士论文研究:评估灵长类动物舌骨和舌骨上肌的咀嚼功能
  • 批准号:
    2337428
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
  • 批准号:
    2337991
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: Microbial control of intestinal organoids development and function
职业:肠道类器官发育和功能的微生物控制
  • 批准号:
    2240045
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Projects
Development of hybrid permanent combined-function magnet for sustainable accelerators
开发用于可持续加速器的混合永磁组合功能磁体
  • 批准号:
    24K21037
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hedgehog signalling in T-cell differentiation and function
T 细胞分化和功能中的 Hedgehog 信号传导
  • 批准号:
    BB/Y003454/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
Mechanisms underlying homeotic function across developmental transitions
发育转变过程中同源异型功能的潜在机制
  • 批准号:
    BB/Y006860/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X039870/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
In the middle of the swarm: neuromodulation of the auditory function in malaria mosquitoes
在群体中间:疟疾蚊子听觉功能的神经调节
  • 批准号:
    MR/Y011732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了