Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)

合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)

基本信息

  • 批准号:
    2324173
  • 负责人:
  • 金额:
    $ 79.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-Technical Description:The world has seen an enormous increase in global connectivity, information processing, and information storage driven by advances in technologies that rely largely on traditional semiconductors. Their underlying material platforms, however, are facing enormous challenges. A future generation of electronic devices can be established using materials which exist in multiple electronic states. Materials and devices that can be switched from an insulator to a metal by an external trigger would revitalize the U.S. semiconductor ecosystem, providing new paths to low-power computing systems and integration into systems for 6G and beyond applications. The project goal is to design and discover materials exhibiting such insulator-to-metal transitions (IMT) that enable room-temperature operation and display large changes in electrical resistivity. The research team, which comprises interdisciplinary expertise in computational and experimental materials physics, data science, and device engineering, aims to enable a culture shift in materials research, development, and deployment through training a well-equipped and diverse workforce with proficiencies in data-driven discovery of advanced materials. Leveraging Materials Genome Initiative principles, the team will deliver a tightly integrated codesign methodology to facilitate modeling and synthesis of new IMT materials with superior properties, and ultimately guide the design towards record-setting device performance to strengthen American leadership in future computing, storage and communication technologies and industries. Technical Description:The goal of the Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT) project is to implement an accelerated discovery and codesign engine for efficient deployment of insulator-metal transition (IMT) materials traditionally marred by sparse prior data and system-level constraints. Achieving this goal requires moving beyond conventional, linear approaches to materials discovery, transforming them into a cyclic and iterative process. The project formulates new computational approaches that fuse computational data with high-throughput materials synthesis and characterization data to overcome key challenges of (i) Materials Discovery from Sparse & Expensive Data, (ii) Efficient Decoding of High-Dimensional Experimental Data, and (iii) Property-Performance Mismatch upon Integration. Their confluence hinders the advancement of novel material platforms for future microelectronic and wireless communication technologies. The project goal will be executed by creating integrated protocols that transform the standard sequential discovery steps (hypothesis generation, synthesis, characterization) into closed-loops fashioned to overcome these challenges: (1) AI-Aided Virtual Screening and Adaptive Discovery, (2) Accelerated Synthesis and Characterization Analytics, and (3) Materials Integration, Device Fabrication, and Codesign. Success with this framework will allow for the realization of material objectives within device constraints and deliver the following outcomes: (1) new classes of single and two-phase IMT materials (2) distributed in open-access databases, (3) theories of IMT behavior, (4) novel IMT thin film synthesis methods, (5) contactless characterization methods to improve throughput, (6) adaptive learning methods to achieve codesigned materials and devices, and (7) quantitative understanding of device performance to benefit future scalability and manufacturing with industrial partners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:在主要依赖传统半导体的技术进步的推动下,全球连接、信息处理和信息存储领域的发展突飞猛进。然而,其基础材料平台正面临巨大挑战。未来一代的电子器件可以使用以多种电子状态存在的材料来建立。可以通过外部触发器从绝缘体切换到金属的材料和设备将振兴美国半导体生态系统,为低功耗计算系统提供新的途径,并集成到6 G及其他应用的系统中。该项目的目标是设计和发现具有这种绝缘体-金属转变(IMT)的材料,使其能够在室温下工作并显示电阻率的巨大变化。该研究团队包括计算和实验材料物理学,数据科学和设备工程方面的跨学科专业知识,旨在通过培训一支装备精良的多元化员工队伍,实现材料研究,开发和部署的文化转变。利用材料基因组计划的原则,该团队将提供一种紧密集成的协同设计方法,以促进具有上级性能的新型IMT材料的建模和合成,并最终引导设计实现创纪录的设备性能,以加强美国在未来计算,存储和通信技术和行业的领导地位。电子相变加速设计、发现和部署(ADEPT)项目的目标是实现一个加速发现和协同设计引擎,以有效部署绝缘体-金属过渡(IMT)材料,这些材料传统上受到稀疏先验数据和系统级约束的影响。实现这一目标需要超越传统的线性材料发现方法,将其转变为循环和迭代的过程。该项目制定了新的计算方法,将计算数据与高通量材料合成和表征数据融合,以克服以下关键挑战:(i)从稀疏昂贵数据中发现材料,(ii)高维实验数据的有效解码,以及(iii)集成时的性能不匹配。它们的融合阻碍了未来微电子和无线通信技术新型材料平台的发展。该项目的目标将通过创建集成协议来执行,该协议将标准的顺序发现步骤(假设生成,合成,表征)转换为闭环,以克服这些挑战:(1)AI辅助虚拟筛选和自适应发现,(2)加速合成和表征分析,以及(3)材料集成,设备制造和协同设计。该框架的成功将允许在器械限制范围内实现实质性目标,并提供以下结果:(1)新型单相和两相IMT材料(2)分布在开放访问数据库中,(3)IMT行为理论,(4)新型IMT薄膜合成方法,(5)提高吞吐量的非接触式表征方法,(6)自适应学习方法,以实现共同设计的材料和设备,以及(7)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Design of Heteroanionic Materials
杂阴离子材料的设计
  • 批准号:
    2413680
  • 财政年份:
    2024
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
  • 批准号:
    2011208
  • 财政年份:
    2020
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729303
  • 财政年份:
    2017
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
  • 批准号:
    2325392
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 79.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了