A Non-Convex Approach for Signal and Image Processing
信号和图像处理的非凸方法
基本信息
- 批准号:1522786
- 负责人:
- 金额:$ 17.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As the digital revolution increases the amount of data generated by sensing methodology such as magnetic resonance imaging and radar, the need to process the data better, faster, and cheaper has been the focus of much research, most notably through work with compressive sensing (CS). However, CS is not without its problems, most of which have emerged as CS has moved from the theoretical to the practical. The theory was developed with convex problems, but many practical applications require the ability to process nonconvex problems that are not easy to solve as quickly as digital sensing systems require. This research project focuses on a particular nonconvex model along with associated numerical algorithms, which when completed will advance the field of nonconvex optimization. Theoretical investigations will be performed to establish conditions for guaranteed performance, which will help engineers and scientists devise experiments to acquire data and recover useful information in a more effective manner. The tools developed will have broad applicability due to the profound impacts of CS, specifically in the fields of medical imaging and geospatial information that are addressed in this project. Furthermore, the investigator will incorporate results of the research into undergraduate and graduate courses and will develop new interdisciplinary courses with focus on both the theory and application, including machine learning and medical imaging, which will serve as a springboard for student recruitment. Compressive sensing (CS) can exactly recover a sparse signal (most elements being zero) from incoherent linear systems, in which any two measurements have as little correlation as possible. Sparsity and incoherence are two important assumptions in CS, but many practical problems are coherent, and conventional methods do not work well. To overcome the coherency barrier, the investigator and collaborators investigate a novel nonconvex model that has advantages over the state-of-the-art methods in CS. The goal of this project is to address key challenges regarding both computational and theoretical aspects of the algorithms, to establish new criteria for exact recovery, and to demonstrate its applicability in prototypical problems. As such, this research is organized with three objectives: (1) Developing efficient algorithms to solve the nonconvex minimization problem, using techniques in convex optimization and dynamical systems to design algorithms and analyze convergence; (2) Searching for conditions that can quantify the success of both convex and nonconvex methods, for example, coherence and minimum separation; (3) Conducting numerical experiments in two types of real problems, medical image reconstruction and hyperspectral image classification, to demonstrate the advantages of the method in terms of accuracy and efficiency. Overall, this project will advance theoretical understanding and algorithmic developments in computational mathematics and provide a new perspective to enable CS-based data recovery in a wide spectrum of applications.
随着数字革命增加了磁共振成像和雷达等传感方法产生的数据量,更好、更快、更便宜地处理数据的需求一直是许多研究的重点,尤其是压缩传感(CS)。然而,计算机科学也并非没有问题,其中大多数问题是随着计算机科学从理论走向实践而出现的。该理论是针对凸问题发展起来的,但许多实际应用需要处理非凸问题的能力,这些问题不像数字传感系统要求的那样容易快速解决。本研究项目聚焦于一个特定的非凸模型及其相关的数值算法,完成后将推动非凸优化领域的发展。将进行理论研究以建立保证性能的条件,这将有助于工程师和科学家设计实验,以更有效的方式获取数据和恢复有用的信息。由于CS的深远影响,开发的工具将具有广泛的适用性,特别是在本项目所涉及的医学成像和地理空间信息领域。此外,研究者将把研究结果纳入本科和研究生课程,并将开发新的跨学科课程,重点是理论和应用,包括机器学习和医学成像,这将作为学生招聘的跳板。压缩感知(CS)可以精确地从非相干线性系统中恢复稀疏信号(大多数元素为零),其中任意两个测量值的相关性尽可能小。稀疏性和非相干性是计算机科学中的两个重要假设,但许多实际问题是相干的,传统的方法不能很好地工作。为了克服相干障碍,研究者和合作者研究了一种新的非凸模型,该模型比CS中最先进的方法具有优势。该项目的目标是解决算法在计算和理论方面的关键挑战,建立精确恢复的新标准,并证明其在原型问题中的适用性。因此,本研究有三个目标:(1)开发有效的算法来解决非凸最小化问题,利用凸优化和动态系统技术来设计算法并分析收敛性;(2)寻找可以量化凸和非凸方法成功的条件,例如,一致性和最小分离;(3)针对医学图像重构和高光谱图像分类两类实际问题进行数值实验,验证该方法在精度和效率方面的优势。总体而言,该项目将推进计算数学的理论理解和算法发展,并为在广泛的应用中实现基于cs的数据恢复提供新的视角。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Point Source Super-resolution Via Non-convex $$L_1$$ L 1 Based Methods
通过基于非凸 $$L_1$$ L 1 的方法实现点源超分辨率
- DOI:10.1007/s10915-016-0169-x
- 发表时间:2016
- 期刊:
- 影响因子:2.5
- 作者:Lou, Yifei;Yin, Penghang;Xin, Jack
- 通讯作者:Xin, Jack
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yifei Lou其他文献
Combining Dynamic Mode Decomposition and Difference-in-Differences in an Analysis of At-Risk Youth
结合动态模式分解和双重差分法分析高危青少年
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Marc Andrew Choi;Siyu Huang;Hengyuan Qi;Marco Scialanga;Emerson McMullen;Axel Sanchez Moreno;Yifei Lou;A. Bertozzi;P. Brantingham - 通讯作者:
P. Brantingham
Tensor Robust Principal Component Analysis via the Tensor Nuclear Over Frobenius Norm
- DOI:
10.1007/s10915-025-02944-8 - 发表时间:
2025-05-29 - 期刊:
- 影响因子:3.300
- 作者:
Huiwen Zheng;Yifei Lou;Guoliang Tian;Chao Wang - 通讯作者:
Chao Wang
A Linear Systems Approach to Imaging Through Turbulence
- DOI:
10.1007/s10851-012-0410-7 - 发表时间:
2013-07-10 - 期刊:
- 影响因子:1.500
- 作者:
Mario Micheli;Yifei Lou;Stefano Soatto;Andrea L. Bertozzi - 通讯作者:
Andrea L. Bertozzi
An image sharpening operator combined with framelet for image deblurring
结合框架的图像锐化算子用于图像去模糊
- DOI:
10.1088/1361-6420/ab6df0 - 发表时间:
2020-03 - 期刊:
- 影响因子:2.1
- 作者:
Jingjing Liu;Yifei Lou;Guoxi Ni;Tieyong Zeng - 通讯作者:
Tieyong Zeng
Truncated l1-2 Models for Sparse Recovery and Rank Minimization
用于稀疏恢复和秩最小化的截断 l1-2 模型
- DOI:
10.1137/16m1098929 - 发表时间:
2017-08 - 期刊:
- 影响因子:2.1
- 作者:
Tian-Hui Ma;Yifei Lou;Ting-Zhu Huang - 通讯作者:
Ting-Zhu Huang
Yifei Lou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yifei Lou', 18)}}的其他基金
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
- 批准号:
2414705 - 财政年份:2024
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
CAREER: Mathematical Modeling from Data to Insights and Beyond
职业:从数据到见解及其他的数学建模
- 批准号:
1846690 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Recent Developments on Mathematical/Statistical Approaches in Data Science
数据科学中数学/统计方法的最新发展
- 批准号:
1821870 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
相似海外基金
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Divide-and-Conquer Approach for Strongly Interacting Systems via Convex Optimization
通过凸优化的强交互系统的分而治之方法
- 批准号:
2111563 - 财政年份:2021
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
CAREER: Optimal Control of Energy Systems via Structured Neural Networks: A Convex Approach
职业:通过结构化神经网络优化能源系统控制:凸方法
- 批准号:
1942326 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Multi-scale analysis of mass-less random fields with non-convex interaction energies - a Renormalisation group approach
具有非凸相互作用能的无质量随机场的多尺度分析 - 重正化群方法
- 批准号:
2435327 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Studentship
AMPS: Collaborative Research: A Convex Geometry and Homotopy Approach for Power-Flow Equations
AMPS:协作研究:潮流方程的凸几何和同伦方法
- 批准号:
1923099 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
AMPS: Collaborative Research: A convex geometry and homotopy approach for power-flow equations
AMPS:协作研究:潮流方程的凸几何和同伦方法
- 批准号:
1922998 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
- 批准号:
18K11177 - 财政年份:2018
- 资助金额:
$ 17.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
- 批准号:
1732434 - 财政年份:2016
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
- 批准号:
1521582 - 财政年份:2015
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
- 批准号:
1521661 - 财政年份:2015
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant