Nonlinear Discrete Optics in the Time Domain
时域非线性离散光学
基本信息
- 批准号:259364470
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The dynamics of wave propagation together with the nonlinearly driven self organization of light are intensively investigated in modern optics. Recently main interest has focused on discrete optical systems as their field dynamics follows a much simpler scheme, which often allows even for analytical solutions. Because of striking similarities optical discrete systems can be analyzed with tools developed in solid state physics and quantum mechanics thus enabling a deeper understanding of complicated effects of light-matter interaction. Therefore the effects of discrete dynamics, which are the focus of the project, are not only relevant for optical systems, but concern general questions of nonlinear dynamics as they are important for Bose Einstein condensates, in plasma physics or for the energy transfer in complex molecular structures. Potential results of the project will therefore be relevant far beyond the concrete context of optics for which they were deduced. The project is concentrates on the experimental investigation of the nonlinear evolution of optical pulses in two coupled fiber loops of slightly different length in the presence of amplitude and phase modulation. This set up has recently also attracted some interest in the frame work of random quantum walks. Pulse evolution in this system happens in discrete round trips and is also discretized with respect to the position of the pulses in each round trip. Up to now the nonlinear properties of such a temporal double discrete system have not been studied in detail, but shall be experimentally investigated within the framework of this project. In addition our experimental set up allows studying the influence of various and even complex valued potentials and in particular to realize a so-called PT-symmetric system, the nonlinear properties of which we want to investigate within the project. We intend to experimentally study for the first time solitons in a double discrete and in particular in a PT symmetric system. We further want to exploit the versatility of our set-up, which allows us to modify the group velocity dispersion, respectively the effective mass, of propagating pulses and to monitor the resulting evolution. We are particularly interested in the nonlinear interaction between fields with effective masses of different sign. We expect to see self acceleration, anomalous damping and self-heating. The results we intend to obtain within the project are not only interesting from the point of view of fundamental physics, but may also become relevant for more practical issues as the optimization of supercontinuums generation in photonic crystal fibers or of the pulse evolution in fiber lasers.
波的传播动力学以及光的非线性驱动自组织在现代光学中得到了广泛的研究。最近的主要兴趣集中在离散光学系统,因为它们的场动力学遵循一个更简单的计划,这往往允许甚至解析解。由于惊人的相似性,光学离散系统可以用固态物理学和量子力学中开发的工具进行分析,从而使人们能够更深入地了解光与物质相互作用的复杂效应。因此,离散动力学的影响,这是该项目的重点,不仅与光学系统有关,而且涉及非线性动力学的一般问题,因为它们对玻色爱因斯坦凝聚体,等离子体物理学或复杂分子结构中的能量转移很重要。因此,该项目的潜在结果将远远超出其推导的具体光学背景。本项目主要研究光脉冲在两个长度稍有不同的耦合光纤环中的非线性演化过程。这种设置最近也吸引了一些兴趣的框架工作的随机量子行走。该系统中的脉冲演变发生在离散的往返行程中,并且还相对于每个往返行程中的脉冲的位置被离散化。到目前为止,这种时间双离散系统的非线性特性还没有被详细研究,但将在本项目的框架内进行实验研究。此外,我们的实验设置允许研究各种甚至复值电位的影响,特别是实现所谓的PT对称系统,我们希望在项目中研究其非线性特性。本文首次对双离散系统,特别是PT对称系统中的孤子进行了实验研究。我们还希望利用我们的设置,这使我们能够修改传播脉冲的群速度色散,分别有效质量的多功能性,并监测由此产生的演变。我们特别感兴趣的是具有不同符号的有效质量的场之间的非线性相互作用。我们希望看到自加速,反常阻尼和自加热。我们打算在该项目中获得的结果不仅从基础物理的角度来看是有趣的,而且还可能成为更实际的问题,如光子晶体光纤中的超连续谱生成或光纤激光器中的脉冲演化的优化。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kapitza light guiding in photonic mesh lattice.
光子网格晶格中的 Kapitza 光导
- DOI:10.1364/ol.44.006013
- 发表时间:2019
- 期刊:
- 影响因子:3.6
- 作者:A. L. M. Muniz;A. Alberucci;C. P. Jisha;M. Monika;S. Nolte;R. Morandotti;U. Peschel
- 通讯作者:U. Peschel
Stability of topologically protected edge states in nonlinear fiber loops
- DOI:10.1103/physreva.100.063830
- 发表时间:2019-12-18
- 期刊:
- 影响因子:2.9
- 作者:Bisianov, A.;Wimmer, M.;Egorov, O. A.
- 通讯作者:Egorov, O. A.
Experimental measurement of the Berry curvature from anomalous transport
- DOI:10.1038/nphys4050
- 发表时间:2017-06-01
- 期刊:
- 影响因子:19.6
- 作者:Wimmer, Martin;Price, Hannah M.;Peschel, Ulf
- 通讯作者:Peschel, Ulf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ulf Peschel其他文献
Professor Dr. Ulf Peschel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ulf Peschel', 18)}}的其他基金
Topological effects in optically anisotropic microcavities
光学各向异性微腔的拓扑效应
- 批准号:
329504356 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Modeling the Dynamics and Interaction of Photonic Nanowire Lasers
光子纳米线激光器的动力学和相互作用建模
- 批准号:
213566309 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Untersuchung der Auswirkung von Raumkrümmung auf die Ausbreitung elektromagnetischer Felder durch Beschränkung der Propagation auf zweidimensionale gekrümmte Flächen
通过限制传播到二维曲面来研究空间曲率对电磁场传播的影响
- 批准号:
205782729 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Discreteness, nonlinearity and dissipation in the temporal domain
时域中的离散性、非线性和耗散
- 批准号:
41201737 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant