Discreteness, nonlinearity and dissipation in the temporal domain
时域中的离散性、非线性和耗散
基本信息
- 批准号:41201737
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is the experimental and theoretical investigation of effects of discreteness in the temporal and in the spectral domain. We will concentrate on time-periodic fields propagating in optical fibres and on their interaction with weak test pulses. The project will be organized in three work packages a) discrete dynamics in the spectral domain, b) discrete dynamics in the temporal domain and c) Bloch oscillations in the spectral domain. In work package a) discrete dynamics in the spectral domain will be studied by monitoring the evolution of time periodic light fields. Respective fields will initially be formed by either two interfering cw-waves having slightly detuned carrier frequencies or by a periodic train of ultra short pulses. The fibre nonlinearity generates a set of discrete frequency components. Hence, four-wave mixing by itself imposes discreteness in the spectral domain. The coupling between the various spectral lines is exclusively mediated by the nonlinearity. The phase-matching condition imposed by the dispersion relation determines whether this interaction is local or long range. The properties of this spectrally discrete system are different from those of conventional discrete ones, where coupling between different components is linear. Depending on the actual value of the group velocity dispersion (GVD) stationary states consisting of chains of temporal solitons exist. However, a stationary state can only be approached, if excess radiation is removed by dissipation. Hence, losses, amplification and spectral filtering will critically influence the evolution.In work package b) discrete dynamics in the temporal domain will be studied by injecting weak test pulses with a distinct wavelength into a stationary time periodic field. Those pulses will experience an effective periodic potential induced by cross-phase modulation. If the walk-off is small the test signal can be trapped by the induced index distribution, very similar to respective experiments in photorefractive crystals, where light propagates in an optically induced lattice. Coupling between different refractive index maxima will allow reproducing well-known effects of spatial discreteness in the temporal domain.In addition, the spectral components of the carrier wave also mix with the test field inducing a coupling to new frequencies. Hence, again discreteness occurs in the spectral domain. In case of temporal walk-off between the test and the periodic carrier wave Bloch oscillations In the spectral domain will occur forming the basis of work-package c).The mutual interplay between temporal and spectral discreteness will form the basic target of our research. We will take advantage of the high degree of flexibility available in the temporal domain. New types of fibres allow tailoring the group velocity dispersion. Spectral filters can be used to shape the spectral response of dissipation and nonlinearities can be local (instantaneous) as well as non-local (delayed) in the temporal domain.
该项目的目的是实验和理论研究的影响的离散在时间和频谱域。我们将集中讨论在光纤中传播的时间周期场及其与弱测试脉冲的相互作用。该项目将分为三个工作包:a)频谱域的离散动力学,b)时域的离散动力学和c)频谱域的布洛赫振荡。在工作包a)中,将通过监测时间周期光场的演化来研究光谱域的离散动力学。各自的场最初将由两个载波频率略有失谐的干扰w-波或由超短脉冲的周期性序列形成。光纤非线性产生一组离散的频率分量。因此,四波混频本身在谱域中造成了离散性。各谱线之间的耦合完全由非线性介导。色散关系所施加的相位匹配条件决定了这种相互作用是局部的还是远距离的。这种频谱离散系统的性质不同于传统的离散系统,不同分量之间的耦合是线性的。根据群速度色散(GVD)的实际值,存在由时间孤子链组成的定态。然而,只有通过耗散去除多余的辐射,才能接近定态。因此,损耗,放大和频谱滤波将严重影响演变。在工作包b中,将通过将具有不同波长的弱测试脉冲注入平稳时间周期场来研究时域中的离散动力学。这些脉冲将经历一个有效的周期电位由交叉相位调制。如果偏离很小,测试信号可以被诱导折射率分布所捕获,这与光折变晶体的实验非常相似,其中光在光学诱导晶格中传播。不同折射率最大值之间的耦合将允许在时域中再现众所周知的空间离散效应。此外,载波的频谱成分也会与测试场混合,从而产生对新频率的耦合。因此,离散性再次出现在谱域中。在测试和周期性载波之间的时间偏离的情况下,谱域中会出现布洛赫振荡,形成工作包c)的基础。时间离散性和光谱离散性之间的相互作用将成为我们研究的基本目标。我们将利用时间域中可用的高度灵活性。新型纤维可以调整群速度色散。光谱滤波器可以用来塑造耗散的光谱响应,非线性可以是局部的(瞬时的),也可以是非局部的(延迟的)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ulf Peschel其他文献
Professor Dr. Ulf Peschel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ulf Peschel', 18)}}的其他基金
Topological effects in optically anisotropic microcavities
光学各向异性微腔的拓扑效应
- 批准号:
329504356 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Nonlinear Discrete Optics in the Time Domain
时域非线性离散光学
- 批准号:
259364470 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Modeling the Dynamics and Interaction of Photonic Nanowire Lasers
光子纳米线激光器的动力学和相互作用建模
- 批准号:
213566309 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Untersuchung der Auswirkung von Raumkrümmung auf die Ausbreitung elektromagnetischer Felder durch Beschränkung der Propagation auf zweidimensionale gekrümmte Flächen
通过限制传播到二维曲面来研究空间曲率对电磁场传播的影响
- 批准号:
205782729 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Overcoming nonlinearity in short-reach optical communication
克服短距离光通信中的非线性
- 批准号:
DP230101493 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Development of multi-scale topology optimization method considering nonlinear magnetic property
考虑非线性磁特性的多尺度拓扑优化方法的发展
- 批准号:
23K13241 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
- 批准号:
23K04616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinearity in Reaction-Diffusion and Kinetic Equations
反应扩散和动力学方程中的非线性
- 批准号:
2204615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Study of Lamb wave frequency mixing by interfacial nonlinearity toward nondestructive evaluation of closed defects
界面非线性兰姆波混频研究对闭合缺陷的无损评价
- 批准号:
22H01361 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Time variation, nonlinearity and heterogeneity mechanics of tissues: application to the respiratory system
组织的时间变化、非线性和异质性力学:在呼吸系统中的应用
- 批准号:
RGPIN-2017-06929 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development and Application of Co-nonlinearity Analysis Methods Leading to Novel Knowledge Awareness
共非线性分析方法的开发和应用导致新知识意识
- 批准号:
21K12018 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnons for quantum information
用于量子信息的磁振子
- 批准号:
21K13847 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
- 批准号:
2108124 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant