Solidarity and monotonicity in cooperative game theory
合作博弈论中的团结性和单调性
基本信息
- 批准号:261749485
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recently, the reconciliation of solidarity and performance orientation attracted a lot of attention in the literature of cooperative game theory. Our project contributes to this research program. The Shapley value (Shapley 1953) probably is the most important single-valued solution concept of cooperative game theory. Young (1985) shows that the Shapley solution is characterized by three economically sound axioms: efficiency, symmetry, and strong monotonicity. While efficiency and symmetry are rather "innocuous" standard axioms, strong monotonicity reflects the strict performance orientation of the Shapley value. Instead of the strong monotonicity axiom, van den Brink et al. (2013) consider a weak monotonicity axiom. This weak monotonicity axiom allows to combine performance orientation on the one hand and solidarity considerations on the other hand. However, the implications of the weak monotonicity axiom have not sufficiently been explored so far. To do this is the first aim of this project. The formation of groups within the society is an important question in social sciences. In cooperative game theory, attempts have been made to explain the formation of groups by help of stability considerations. Within these attempts, solidarity among the players has not yet been taken into account. In this project, we examine whether and to what extent solidarity promotes the formation of groups. Finally, the Shapley solution and its characterizations form the basis for many other applications and allocation rules as well as their foundations. In this project, we look at established applications through the lens of solidarity.
最近,团结和绩效导向的协调在合作博弈论的文献中引起了很多关注。我们的项目有助于这项研究计划。Shapley值(Shapley 1953)可能是合作博弈论中最重要的单值解概念。Young(1985)指出Shapley解的特征在于三个经济上合理的公理:有效性、对称性和强单调性。虽然效率和对称性是相当“无害”的标准公理,但强单调性反映了Shapley值的严格性能取向。代替强单调性公理,货车den Brink等人(2013)考虑了弱单调性公理。这种弱单调性公理允许一方面将联合收割机性能取向与另一方面的团结考虑相结合。然而,到目前为止,弱单调性公理的含义还没有得到充分的探讨。这是这个项目的首要目标。社会群体的形成是社会科学中的一个重要问题。在合作博弈论中,人们试图通过稳定性的考虑来解释群体的形成。在这些努力中,尚未考虑到行为者之间的团结。在这个项目中,我们研究团结是否以及在多大程度上促进了群体的形成。最后,Shapley解及其特征构成了许多其他应用和分配规则的基础。在这个项目中,我们通过团结的透镜来看待已建立的应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. André Casajus, since 11/2015其他文献
Professor Dr. André Casajus, since 11/2015的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Negatively dependent sampling and monotonicity conditions
负相关采样和单调性条件
- 批准号:
567057-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Development of monotonicity analysis method for optimal resource operation
开发最优资源运营的单调性分析方法
- 批准号:
20K14711 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
- 批准号:
20K03627 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conditionals and topology; the origins of non-monotonicity
条件和拓扑;
- 批准号:
17K02699 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solidarity, monotonicity, and externalities in cooperative game theory
合作博弈论中的团结性、单调性和外部性
- 批准号:
288880950 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Monotonicity of conditional variance
条件方差的单调性
- 批准号:
482630-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
- 批准号:
15K04962 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monotonicity formula methods for nonlinear PDEs
非线性偏微分方程的单调性公式方法
- 批准号:
EP/K024566/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Goods Revenue Monotonicity in Combinatorial Auctions
组合拍卖中的商品收入单调性
- 批准号:
24830004 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up