Solidarity, monotonicity, and externalities in cooperative game theory

合作博弈论中的团结性、单调性和外部性

基本信息

  • 批准号:
    288880950
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Recently, two issues attracted a lot of attention in the literature on cooperative game theory. First, the reconciliation of solidarity and performance orientation and, second, the incorporation of externalities. Our project connects to both lines of research and strives for combining insights from both parts of the literature.The Shapley value probably is the most important single-valued solution concept in cooperative game theory. The Shapley value is strictly performance-oriented and disregards externalities.There exist several solutions that generalize the Shapley value and take into account aspects of solidarity. Characterizations (axiomatizations) allow for a better judgement on the plausibility of these solutions.Similarly, there exist several generalizations of the Shapley value for cooperative games with externalities. Characterizations allow for a better judgement on these generalizations.The existing generalizations are based on the assumption that a solution should satisfy linearity. DeClippel and Serrano (2008, ECTA), however, argue that this is a rather mathematical assumption, which is not too compelling. Ever since Young (1985, IJGT) showed that the Shapley value can be characterized without linearity, researchers tried to do without the assumption of linearity. Casajus and Huettner (2014, JET) succeed to provide a characterization without linearity for solidary solutions. In this project, we aim to make use of these insights when dealing with externalities. We aim for a characterization of established solutions for cooperative games with externalities that do not rely on the linearity axiom. Moreover, we look for further foundations of known solution concepts.We will also study solution concepts that reflect the notion of solidarity in the case of externalities. Further, the formation of stable groups shall be studied in the context of externalities. Finally, new structural insights shall be gained by adapting recent results on cooperative games without externalities.
近年来,在合作博弈论的研究中,有两个问题引起了人们的广泛关注。第一,团结与绩效导向的协调;第二,外部性的纳入。我们的项目连接到这两方面的研究,并努力结合从两个部分的文献见解。Shapley值可能是合作博弈论中最重要的单值解概念。Shapley值严格以绩效为导向,不考虑外部性。有几种解决方案可以概括Shapley值并考虑到团结的各个方面。特征描述(公理化)允许对这些解决方案的合理性做出更好的判断。同样,对于具有外部性的合作博弈,也存在一些Shapley值的概括。特征描述有助于对这些概括做出更好的判断。现有的推广是基于一个解应该满足线性的假设。然而,DeClippel和Serrano (2008, ECTA)认为,这是一个相当数学化的假设,并不太有说服力。自从Young (1985, IJGT)证明Shapley值可以在没有线性的情况下表征以来,研究者们就试图在没有线性假设的情况下进行研究。Casajus和Huettner (2014, JET)成功地为统一解提供了一个没有线性的表征。在这个项目中,我们的目标是在处理外部性时利用这些见解。我们的目标是描述具有不依赖于线性公理的外部性的合作博弈的既定解决方案。此外,我们寻找已知解决方案概念的进一步基础。我们还将研究在外部性情况下反映团结概念的解决方案概念。此外,稳定集团的形成应在外部性的背景下进行研究。最后,通过调整最近关于无外部性的合作游戏的研究结果,我们将获得新的结构性见解。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decomposition of solutions and the Shapley value
解的分解和 Shapley 值
  • DOI:
    10.1016/j.geb.2017.05.001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casajus;Huettner
  • 通讯作者:
    Huettner
The Coleman–Shapley index: being decisive within the coalition of the interested
科尔曼沙普利指数:在利益相关者联盟中具有决定性作用
  • DOI:
    10.1007/s11127-019-00654-y
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Casajus;André;Huettner
  • 通讯作者:
    Huettner
Calculating direct and indirect contributions of players in cooperative games via the multi-linear extension
通过多线性扩展计算合作博弈中玩家的直接和间接贡献
  • DOI:
    10.1016/j.econlet.2017.12.011
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Casajus;Huettner
  • 通讯作者:
    Huettner
Efficient extensions of communication values
  • DOI:
    10.1007/s10479-017-2661-6
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    S. Béal;André Casajus;Frank Huettner
  • 通讯作者:
    S. Béal;André Casajus;Frank Huettner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Frank Hüttner其他文献

Dr. Frank Hüttner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Frank Hüttner', 18)}}的其他基金

Generalisations of the Shapley value decomposition of goodness-of-fit measures in regression models
回归模型中拟合优度测量的 Shapley 值分解的概括
  • 批准号:
    245343620
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Negatively dependent sampling and monotonicity conditions
负相关采样和单调性条件
  • 批准号:
    567057-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Development of monotonicity analysis method for optimal resource operation
开发最优资源运营的单调性分析方法
  • 批准号:
    20K14711
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
  • 批准号:
    20K03627
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
  • 批准号:
    19K13666
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conditionals and topology; the origins of non-monotonicity
条件和拓扑;
  • 批准号:
    17K02699
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monotonicity of conditional variance
条件方差的单调性
  • 批准号:
    482630-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
  • 批准号:
    15K04962
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solidarity and monotonicity in cooperative game theory
合作博弈论中的团结性和单调性
  • 批准号:
    261749485
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Monotonicity formula methods for nonlinear PDEs
非线性偏微分方程的单调性公式方法
  • 批准号:
    EP/K024566/1
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Goods Revenue Monotonicity in Combinatorial Auctions
组合拍卖中的商品收入单调性
  • 批准号:
    24830004
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了