Hot charge carriers in quantum dot-based electron transfer systems for application in photovoltaics
光伏应用中基于量子点的电子转移系统中的热载流子
基本信息
- 批准号:262584021
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Low-cost solar cells as an alternative to the widely used silicon-based photovoltaic (PV) devices have attracted immense interest during the past decades. In this field the dye sensitized solar cell (DSSC), with a molecular dye as light absorber, reaches a conversion efficiency of 11.9% with an electron transfer (ET) time on the femtosecond time scale. Inspired by the DSSC the quantum dot solar cell (QDSC) has been developed where the light harvesting is achieved by semiconductor quantum dots (QD). QD exhibit robustness against photodegradation, large extinction coefficients down to the near infrared and the mechanism of carrier multiplication. Main obstacles towards higher conversion efficiencies of QDSCs are sub-band gap states acting as charge traps and nonradiative surface recombination processes because of a large surface-to-volume ratio of QD. An alternative to the semiconductor QD are metal QD (Au, Ag, Cu) performing a plasmon-induced ET to TiO2.The previous project aimed for charge and energy transfer processes in QD-molecular acceptor assemblies with focus on charge separating heterostructures and hot charge carriers. Furthermore, the photoinduced ET and coherent phenomena at the dye/semiconductor interface have been successfully examined. In line with the first funding period we will investigate charge separating heterostructures and focus on the separation of multiexcitons with particular emphasis on the shell effect. Furthermore, the QD intrinsic charge separation dynamics of holes (core) and electrons (shell) will be manipulated by a spacing, large band gap intershell (onion-like QD). By variation of the intershell thickness the electronic coupling between core and shell should be modified leading to different charge separation dynamics. We already implemented a NIR transient absorption set-up, successfully synthesized colloidal PbS QD which are particularly interesting for PV applications and started the spectroscopic characterization. We will test the ET dynamics of systems containing PbS QD and molecular electron acceptors, and quickly move on to the investigation of PbS QD directly grown on the surface of metal oxide thin films. To avoid toxic elements of the standard semiconductor QD, metal QD can serve as an alternative. We will investigate surface plasmon-induced ET in assemblies containing colloidal Cu QD and molecular acceptors and study the photodynamics of Cu QD directly grown on metal oxide films. The effect of pump photon energy on the transfer mechanism in metal QD/TiO2 (QD as electron donor or acceptor) will be explored.We plan to extend our research on QD-based energy transfer systems and want to include the process of two-photon absorption. In an ideal case a large band gap QD (ZnSe) will act as two-photon absorber and subsequently transfer the excitation energy to trigger a certain functionality. This process could e.g. boost the two-photon cross-section of established phototriggers.
在过去的几十年里,低成本太阳能电池作为广泛使用的硅基光伏(PV)设备的替代品引起了人们的极大兴趣。在该领域,以分子染料作为光吸收剂的染料敏化太阳能电池(DSSC)的转换效率达到11.9%,电子转移(ET)时间达到飞秒时间尺度。受 DSSC 的启发,开发了量子点太阳能电池 (QDSC),其中通过半导体量子点 (QD) 实现光收集。量子点表现出抗光降解的鲁棒性、低至近红外的大消光系数以及载流子倍增机制。 QDSC 提高转换效率的主要障碍是由于 QD 的表面积与体积比较大而充当电荷陷阱的子带隙态和非辐射表面复合过程。半导体 QD 的替代方案是金属 QD(Au、Ag、Cu),可通过等离激元诱导 ET 转化为 TiO2。之前的项目旨在研究 QD 分子受体组件中的电荷和能量转移过程,重点关注电荷分离异质结构和热电荷载流子。此外,还成功地研究了染料/半导体界面处的光诱导 ET 和相干现象。根据第一个资助期,我们将研究电荷分离异质结构,并重点关注多激子的分离,特别强调壳层效应。此外,空穴(核)和电子(壳)的量子点本征电荷分离动力学将通过间距大的带隙壳间(洋葱状量子点)来操纵。通过改变壳间厚度,应该改变核和壳之间的电子耦合,从而导致不同的电荷分离动力学。我们已经实施了近红外瞬态吸收装置,成功合成了对光伏应用特别感兴趣的胶体 PbS QD,并开始了光谱表征。我们将测试包含 PbS QD 和分子电子受体的系统的 ET 动力学,并快速转向直接在金属氧化物薄膜表面生长的 PbS QD 的研究。为了避免标准半导体量子点的有毒元素,金属量子点可以作为替代品。我们将研究含有胶体 Cu QD 和分子受体的组件中的表面等离子体诱导的 ET,并研究直接生长在金属氧化物薄膜上的 Cu QD 的光动力学。将探讨泵浦光子能量对金属 QD/TiO2(QD 作为电子供体或受体)传输机制的影响。我们计划扩展对基于 QD 的能量传输系统的研究,并希望包括双光子吸收过程。在理想情况下,大带隙量子点(ZnSe)将充当双光子吸收器,并随后转移激发能量以触发特定功能。这个过程可以例如提高已建立的光触发器的双光子横截面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Josef Wachtveitl其他文献
Professor Dr. Josef Wachtveitl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Josef Wachtveitl', 18)}}的其他基金
Photomodulation of interfacial electron transfer by optical switches
通过光开关对界面电子转移进行光调制
- 批准号:
5429244 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Molecular mechanisms of energy storage and release in MOST systems
MOST系统能量储存和释放的分子机制
- 批准号:
517730493 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Optical control on the nanoscale via photoresponsive compounds
通过光响应化合物进行纳米级光学控制
- 批准号:
236629596 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于电荷泄漏与静电击穿效应的摩擦纳米发电机及电荷转移机制研
究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
染色质重塑因子CHD7在胚胎发育神经胚形成阶段的功能研究
- 批准号:81974229
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
ECCO - Evaluation of Outcomes Associated with Community Care Prescribed Opioids
ECCO - 社区护理处方阿片类药物相关结果评估
- 批准号:
10537122 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Harnessing the Advantages of Dark Exciton in Perovskite Nanostructures as the Quantum Emitter and the Source of Charge Carriers
利用钙钛矿纳米结构中暗激子的优势作为量子发射器和电荷载流子源
- 批准号:
2304936 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
An urinary drug disposing approach for treatment of bladder Cancer
一种治疗膀胱癌的泌尿药物处置方法
- 批准号:
10737090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Revealing the Dynamics of Charge Carriers in Strongly Correlated Materials with Scanning Tunneling Potentiometry
职业:通过扫描隧道电位法揭示强相关材料中电荷载流子的动力学
- 批准号:
2239478 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
A Multimodal Hierarchical Theranostic Nanoparticle for Castration Resistant Prostate Cancer
用于去势抵抗性前列腺癌的多模式分级治疗诊断纳米颗粒
- 批准号:
10259187 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Momitor: Wearable Technology for Early Detection of Postpartum Hemorrhage
Momitor:用于早期发现产后出血的可穿戴技术
- 批准号:
10483278 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Multimodal Hierarchical Theranostic Nanoparticle for Castration Resistant Prostate Cancer
用于去势抵抗性前列腺癌的多模式分级治疗诊断纳米颗粒
- 批准号:
10513295 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Self-assembled iron(III) hosts for MRI-guided delivery of chemotherapeutics
用于 MRI 引导化疗药物输送的自组装铁 (III) 宿主
- 批准号:
10303801 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Admin. Supp. for NCI P30 Cancer Center Grants to Facilitate the Development of Standardized Electronic Treatment Plan Builds for NCI-Supported Clinical Trials Applicable Across Clinical Research Sites
行政。
- 批准号:
10442122 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Dual Use of Medications (DUAL) Partnered Evaluation Initiative
药物双重用途 (DUAL) 合作评估计划
- 批准号:
10181835 - 财政年份:2021
- 资助金额:
-- - 项目类别:














{{item.name}}会员




