Pulse propagation and soliton formation in nonlinear Photonic Band Gap materials
非线性光子带隙材料中的脉冲传播和孤子形成
基本信息
- 批准号:26333225
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Periodically microstructured dielectric materials whose linear properties are characterized through a photonic bandstructure that - for appropriate choices of the relevant parameters - may exhibit a photonic band gap (PBG), a frequency range where ordinary (linear) propagation is disallowed. However, in the presence of optical nonlinearities, wave propagation for frequencies inside the PBG may be realized for sufficiently intense pulses in the form of gap-solitons. Recent progress in mircofabrication technology allows one to manufacture Photonic Band Gap materials whose constituents exhibit sizeable nonlinearities so that nonlinear PBG materials will become increasingly important both in fundamental studies of nonlinear effects and advanced applications in all-optical information processing and logic gates. Within this project, we will investigate the propagation of pulses in nonlinear PBG materials and their interaction with defects as well as with each other. Through a combination of numerical simulations and variational techniques, we will study the evolution of nonlinear pulses into gap-solitons where - due to the strong multiple scattering near the PBG - we expect strongly non-Markovian radiation dynamics to occur. We will carry out similar investigations for the trapping of soliton at linear and nonlinear defects within the PBG material and how to control trapped solitons through interactions with propagating gap-solitons. These investigations will be of significance for the realization of practical all-optical technologies as well as provide novel insights into basic nonlinear phenomena which -owing to the universal nature of nonlinear processes - may have implications to other nonlinear systems such as solitons in Bose-Einstein condensates in optical lattices.
周期性微结构介电材料,其线性特性通过光子带结构来表征,对于相关参数的适当选择,光子带结构可以表现出光子带隙(PBG),即不允许普通(线性)传播的频率范围。然而,在存在光学非线性的情况下,对于足够强的脉冲,可以以间隙孤子的形式实现PBG内部频率的波传播。近年来,随着微加工技术的发展,光子带隙材料的成分呈现出相当大的非线性,非线性光子带隙材料在非线性效应的基础研究和全光信息处理及逻辑门的高级应用中将变得越来越重要。在这个项目中,我们将研究脉冲在非线性PBG材料中的传播以及它们与缺陷的相互作用。通过数值模拟和变分技术相结合,我们将研究非线性脉冲到间隙孤子的演化-由于PBG附近的强多重散射-我们预计会发生强烈的非马尔可夫辐射动力学。我们将进行类似的调查,在PBG材料内的线性和非线性缺陷的孤子的捕获,以及如何控制捕获的孤子通过与传播的间隙孤子的相互作用。这些研究对于实现实用的全光学技术具有重要意义,同时也为基本的非线性现象提供了新的见解,由于非线性过程的普遍性,这些现象可能对其他非线性系统(如光晶格中玻色-爱因斯坦凝聚体中的孤子)产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Kurt Busch其他文献
Professor Dr. Kurt Busch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Kurt Busch', 18)}}的其他基金
SiGeSn-Nanostructures for Integrated Quantum Well Infrared Photodetectors
用于集成量子阱红外光电探测器的 SiGeSn 纳米结构
- 批准号:
390910964 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Light-path engineering in disordered waveguiding systems
无序波导系统中的光路工程
- 批准号:
278746770 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Non-Markovian continuous-time quantum random walks of multiple interacting particles
多个相互作用粒子的非马尔可夫连续时间量子随机游走
- 批准号:
278224170 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Durchstimmbarer oberflächenverstärkter Raman-Effekt an metallischen Nanostabensembles
金属纳米棒系综上的可调谐表面增强拉曼效应
- 批准号:
202983129 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Hydrodynamic Modeling of the Ultrafast Nonlinear Optical Response of Metallic Nanostructures
金属纳米结构超快非线性光学响应的流体动力学建模
- 批准号:
139246285 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Light propagation in strongly scattering media and photonic crystals
强散射介质和光子晶体中的光传播
- 批准号:
5261344 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似国自然基金
页岩超临界CO2压裂分形破裂机理与分形离散裂隙网络研究
- 批准号:
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
- 批准号:40872203
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms for the propagation of R-loop induced chromosomal fragments in the germline
R环诱导染色体片段在种系中的繁殖机制
- 批准号:
2341479 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Information Propagation over Networks
职业:网络信息传播
- 批准号:
2337808 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
- 批准号:
2333837 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
- 批准号:
2344923 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant