Analytical probabilistic treatment planning

分析概率治疗计划

基本信息

  • 批准号:
    265744405
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2014
  • 资助国家:
    德国
  • 起止时间:
    2013-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

We propose a three year research program extending our joint work regarding analytical probabilistic modeling (APM) for radiation therapy treatment planning.In current clinical practice, radiation therapy treatment planning does not explicitly model sources of uncertainty such as inter- and intrafractional motion, patient immobilization, and delineation errors. After geometric uncertainties have been reduced as far as possible through image guidance, uncertainties are only implicitly accounted for with standardized margin recipes. Mathematical approaches for patient specific uncertainty quantification and minimization have never found broad clinical application due to conceptual limitations and run time issues. Generic margin approaches compromise the quality of radiation treatments for individual patients. A uniform margin may cause unnecessary exposure of healthy tissue and the margin concept does not prevent "cold spots" within the tumor.We want to close this gap of inadequate clinical uncertainty modeling and develop APM into a computational research framework for probabilistic radiation therapy treatment planning for protons and carbon ions.APM enables the closed form computation of the expectation value and the (co-)variance of intensity-modulated dose distributions (and in principle all higher-order moments). This closed algebraic form provides central advantages for uncertainty quantification and minimization.1. The quality of all numerical simulations can be directly controlled and evaluated; APM is not compromised by algorithmic uncertainties, e.g. statistical fluctuations2. APM explicitly incorporates complex correlation models of the uncertainties and the non-trivial dosimetric interplay of random and systematic uncertainties in fractionated radiation therapy3. APM allows for the closed form definition, differentiation, and thence efficient optimization of existing and novel probabilistic objectives4. The output of APM is a Gaussian probability density which enables the propagation of uncertainty between related computationsWith the proposed research we pursue two goals:1. Exploit the reduction in computational complexity achieved through the analytical formulation of the treatment planning problem, to enable efficient robust planning of carbon ion treatments including uncertainties in the associated biological models.2. Enable closed-form propagation of uncertainty into composite treatment plan quality indicators. This will provide clinicians with error bars on quantities directly relevant for their decision and subsequently enable inverse planning through direct specification of probabilistic treatment plan features.Through accounting for potential discrepancies between the simulated and the actually delivered treatment plan we want to help reduce both local failure and normal tissue complication during radiation therapy.
我们提出了一个为期三年的研究计划,扩展我们的联合工作,关于分析概率建模(APM)的放射治疗治疗planning.In目前的临床实践中,放射治疗治疗计划没有明确的模型来源的不确定性,如间和intrafraction运动,病人固定,和描绘错误。在通过图像引导尽可能减少几何不确定性之后,不确定性仅通过标准化的边缘配方被隐含地考虑。由于概念上的限制和运行时间问题,用于患者特定不确定性量化和最小化的数学方法从未发现广泛的临床应用。一般的边缘方法损害了个体患者的放射治疗质量。均匀的边界可能会导致健康组织不必要的暴露,并且边界概念不能防止肿瘤内的“冷点”。我们希望弥补临床不确定性建模不足的这一差距,并将APM发展成为质子和碳离子概率放射治疗治疗计划的计算研究框架。APM使强度的期望值和(协)方差的封闭形式计算成为可能。调制剂量分布(以及原则上所有高阶矩)。这种封闭的代数形式为不确定性量化和最小化提供了核心优势。所有数值模拟的质量都可以直接控制和评估; APM不会受到算法不确定性的影响,例如统计波动2。APM明确纳入了不确定性的复杂相关模型,以及分次放射治疗中随机和系统不确定性的非平凡剂量相互作用3。APM允许封闭形式的定义,分化,从而有效地优化现有的和新的概率目标4。APM的输出是一个高斯概率密度,这使得相关计算之间的不确定性传播与建议的研究,我们追求两个目标:1。利用通过治疗计划问题的分析公式实现的计算复杂性的降低,以实现碳离子治疗的有效鲁棒计划,包括相关生物模型中的不确定性。使不确定性能够以封闭形式传播到复合治疗计划质量指标中。这将为临床医生提供与其决策直接相关的数量上的误差条,并随后通过直接指定概率治疗计划特征来实现逆向计划。通过考虑模拟和实际交付的治疗计划之间的潜在差异,我们希望帮助减少放射治疗期间的局部失败和正常组织并发症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Mark Bangert其他文献

Dr. Mark Bangert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Mark Bangert', 18)}}的其他基金

Sub-motor representation of perception memory in musicians %u2013 a combined fMRI, and TMS study
子运动%20表示%20of%20感知%20记忆%20in%20音乐家%20%u2013%20a%20组合%20fMRI、%20和%20TMS%20研究
  • 批准号:
    5412786
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes
用于分析动态和异质微生物组的概率深度学习模型和集成生物实验
  • 批准号:
    10622713
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Probabilistic Multiscale Modeling of the Tumor Microenvironment
肿瘤微环境的概率多尺度建模
  • 批准号:
    10586545
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Probabilistic treatment of multi-scale residual stress and defects in fracture assessment of dissimilar joints for nuclear fusion
核聚变异种接头断裂评估中多尺度残余应力和缺陷的概率处理
  • 批准号:
    2754590
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Treatment optimization based on probabilistic visual mapping of subthalamic nucleus deep brain stimulation therapy effects.
基于丘脑底核深部脑刺激治疗效果的概率视觉映射的治疗优化。
  • 批准号:
    22K15714
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10705838
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10689580
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
  • 批准号:
    10206417
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Multifile probabilistic record linkage for drug overdose surveillance and public health action
用于药物过量监测和公共卫生行动的多文件概率记录链接
  • 批准号:
    10039949
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Isoform-level probabilistic transcriptome-wide association to undercover neurogenetic mechanisms underlying complex psychiatric traits
同种型水平的概率转录组范围与复杂精神特征背后的秘密神经发生机制的关联
  • 批准号:
    10738989
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Isoform-level probabilistic transcriptome-wide association to undercover neurogenetic mechanisms underlying complex psychiatric traits
同种型水平的概率转录组范围与复杂精神特征背后的秘密神经发生机制的关联
  • 批准号:
    10319912
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了