COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
基本信息
- 批准号:10689580
- 负责人:
- 金额:$ 72.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-24 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaAsthmaBiologyBloodCause of DeathCharacteristicsChronic DiseaseChronic Obstructive Pulmonary DiseaseClassificationClinicalClinical DataCollaborationsComplexComputing MethodologiesDataData CollectionData SetDetectionDevelopmentDiseaseDisease ManagementDisease ProgressionDisease modelEnrollmentEnsureEtiologyFunctional ImagingFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic DiseasesGenomicsGraphHealth Care CostsImageIncidenceIndividualLeadLinkMachine LearningMeasurementMedicineMethodologyMethodsModalityModelingMolecularMolecular TargetMultiomic DataNatureOnset of illnessPathway interactionsPatientsPatternPhenotypePulmonary function testsPulmonologyResearchResearch PersonnelSamplingScienceSeveritiesSeverity of illnessStable DiseaseSymptomsSyndromeSystemTestingTimeTissuesTrainingValidationVisitX-Ray Computed Tomographyairway obstructionanalytical methodbasecellular targetingchest computed tomographyclinical practiceclinical subtypesclinically relevantcohortcomputer frameworkcomputerized toolsdata integrationdata modelingdiagnostic tooldisabilitydisease phenotypedisorder subtypefollow-upgenetic variantgenomic dataimaging geneticsimprovedinnovationinsightlearning algorithmmortalitymortality riskmultimodal datamultimodalitymultiscale dataperipheral bloodpersonalized predictionspersonalized therapeuticprecision medicinepredictive modelingprognostic toolprognostic valuepulmonary functionradiological imagingsuccesstreatment guidelinesunsupervised learningvector
项目摘要
COPD SUBTYPING AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL
MODELS
ABSTRACT
One of the main obstacles in developing efficient personalized therapeutic and disease management strategies
is that most common diseases are typically defined based on symptoms and clinical measurements, although
they are believed to be syndromes, consisting of multiple subtypes with variable etiology. Identifying disease
subtypes has thus become very important, but so far it has been met with limited success for most diseases. In
asthma, a notable exception, it was the clinical characterization that led to successful subtyping; and this is now
incorporated in treatment guidelines. Unsupervised machine learning approaches of single data modalities (e.g.,
omics, radiographic images) have not produced actionable subtypes due to instability across cohorts. Developing
data integrative approaches for multi-scale data, which are becoming available for a number of diseases, is
expected to lead to robust subtyping and provide mechanistic insights of disease onset and progression.
This proposal focuses on developing new computational methods, based on probabilistic graphical models
(PGMs), to address this unmet need; and apply them to investigate three problems of clinical importance in
chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of mortality in USA. Our
underlying hypothesis is that PGMs can integrate and analyze under the same probabilistic framework
heterogeneous biomedical data (omics, chest CT scan, clinical) and identify disease subtypes and their main
determinants. The objectives of our proposal is to build a comprehensive computational framework for disease
subclassification, identify stable COPD subtypes at the baseline and longitudinally, and build interpretable
models of the disease The deliverables of this project are: (1) new integrative computational approaches for
clinical subtyping from multi-scale data; (2) new predictors of COPD progression and severity; (3) new
discoveries of longitudinally stable COPD subtypes; (4) new predictors of future development of COPD; (5) new
omics datasets that will be invaluable to future research in the area (baseline and longitudinal).
To ensure the success of the project we follow a team science approach. This multi-PI proposal builds on the
ongoing efforts of our group in the area of graphical models and their applications in biomedicine; and the
ongoing collaboration of the three PIs that have complementary strengths: Prof. Benos (systems medicine and
machine learning), Dr. Hersh (COPD genetics and genomics) and Dr. Sciurba (clinical aspects of COPD). It is
powered by the access of the investigators to three major COPD cohorts (COPDGene®, SCCOR, ECLIPSE) that
contain multiple parallel deep phenotyping and omics data from thousands of patients and controls. Although in
this project we focus on COPD, our methods are generally applicable to any disease, therefore our project will
have a positive impact beyond the above deliverables. We believe that due to their robust nature and
interpretability, PGMs will soon become the norm for multi-scale biomedical data integration and modeling, when
genetic and genomic data collection will become routine prognostic and diagnostic tools in clinical practice.
Copd亚型分型及综合概率图早期预测
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10705838 - 财政年份:2022
- 资助金额:
$ 72.36万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10689574 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 72.36万 - 项目类别:
Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
- 批准号:
9310591 - 财政年份:2017
- 资助金额:
$ 72.36万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 72.36万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 72.36万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 72.36万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 72.36万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 72.36万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 72.36万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 72.36万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 72.36万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 72.36万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 72.36万 - 项目类别:
Standard Grant














{{item.name}}会员




