COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879

使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879

基本信息

  • 批准号:
    10705838
  • 负责人:
  • 金额:
    $ 70.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-24 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

COPD SUBTYPING AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS ABSTRACT One of the main obstacles in developing efficient personalized therapeutic and disease management strategies is that most common diseases are typically defined based on symptoms and clinical measurements, although they are believed to be syndromes, consisting of multiple subtypes with variable etiology. Identifying disease subtypes has thus become very important, but so far it has been met with limited success for most diseases. In asthma, a notable exception, it was the clinical characterization that led to successful subtyping; and this is now incorporated in treatment guidelines. Unsupervised machine learning approaches of single data modalities (e.g., omics, radiographic images) have not produced actionable subtypes due to instability across cohorts. Developing data integrative approaches for multi-scale data, which are becoming available for a number of diseases, is expected to lead to robust subtyping and provide mechanistic insights of disease onset and progression. This proposal focuses on developing new computational methods, based on probabilistic graphical models (PGMs), to address this unmet need; and apply them to investigate three problems of clinical importance in chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of mortality in USA. Our underlying hypothesis is that PGMs can integrate and analyze under the same probabilistic framework heterogeneous biomedical data (omics, chest CT scan, clinical) and identify disease subtypes and their main determinants. The objectives of our proposal is to build a comprehensive computational framework for disease subclassification, identify stable COPD subtypes at the baseline and longitudinally, and build interpretable models of the disease The deliverables of this project are: (1) new integrative computational approaches for clinical subtyping from multi-scale data; (2) new predictors of COPD progression and severity; (3) new discoveries of longitudinally stable COPD subtypes; (4) new predictors of future development of COPD; (5) new omics datasets that will be invaluable to future research in the area (baseline and longitudinal). To ensure the success of the project we follow a team science approach. This multi-PI proposal builds on the ongoing efforts of our group in the area of graphical models and their applications in biomedicine; and the ongoing collaboration of the three PIs that have complementary strengths: Prof. Benos (systems medicine and machine learning), Dr. Hersh (COPD genetics and genomics) and Dr. Sciurba (clinical aspects of COPD). It is powered by the access of the investigators to three major COPD cohorts (COPDGene®, SCCOR, ECLIPSE) that contain multiple parallel deep phenotyping and omics data from thousands of patients and controls. Although in this project we focus on COPD, our methods are generally applicable to any disease, therefore our project will have a positive impact beyond the above deliverables. We believe that due to their robust nature and interpretability, PGMs will soon become the norm for multi-scale biomedical data integration and modeling, when genetic and genomic data collection will become routine prognostic and diagnostic tools in clinical practice.
COPD亚型和早期预测使用综合概率图形图 型号 抽象的 开发有效的个性化疗法和疾病管理策略的主要障碍之一 是否通常根据症状和临床测量来定义最常见的疾病,尽管 它们被认为是综合症,由多种子类型组成,具有可变的病因。识别疾病 因此,亚型已经变得非常重要,但是到目前为止,大多数疾病的成功都有限。在 哮喘是一个值得注意的例外,正是临床表征导致了成功的亚型。现在是 纳入治疗指南。无监督的单个数据模式的机器学习方法(例如, OMICS,放射线图)由于整个队列的不稳定性而没有产生可操作的亚型。发展 用于多种疾病的多尺度数据的数据集成方法是 预计会导致强大的亚型,并提供疾病发作和进展的机械见解。 该建议重点是基于概率图形模型开发新的计算方法 (PGMS),以满足这种未满足的需求;并应用它们调查临床重要性的三个问题 慢性阻塞性肺疾病(COPD),这是美国死亡率的第四个主要原因。我们的 基本假设是PGM可以在相同的概率框架下整合和分析 异质生物医学数据(OMICS,胸部CT扫描,临床)并鉴定疾病亚型及其主要 确定。我们提案的目标是建立一个疾病的综合计算框架 子分类,在基线和纵向上识别稳定的COPD亚型,并构建可解释的 疾病模型该项目的可交付成果是:(1) 来自多尺度数据的临床亚型; (2)COPD进展和严重性的新预测指标; (3)新 纵向稳定的COPD亚型的发现; (4)COPD未来发展的新预测指标; (5)新 对该地区未来研究(基线和纵向)将是无价的OMIC数据集。 为了确保项目的成功,我们遵循团队科学方法。这个多PI的建议建立在 我们小组在图形模型领域的持续努力及其在生物医学中的应用;和 具有互补优势的三个PI的持续合作:Benos教授(系统医学和 机器学习),HERSH博士(COPD遗传学和基因组学)和Sciurba博士(COPD的临床方面)。这是 通过调查人员进入三个主要的COPD队列(COPDGENE®,SCCOR,ECLIPSE)的动力 包含来自数千名患者和对照组的多个平行深层表型和OMIC数据。虽然在 我们专注于COPD的项目,我们的方法通常适用于任何疾病,因此我们的项目将 在上述可交付成果之外产生积极影响。我们相信,由于它们的强大性质和 可解释性,PGM很快将成为多尺度生物医学数据集成和建模的规范 遗传和基因组数据收集将成为临床实践中常规的预后和诊断工具。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model to Predict Residual Volume from Forced Spirometry Measurements in Chronic Obstructive Pulmonary Disease.
一种通过强制肺活量测定来预测慢性阻塞性肺疾病残余量的模型。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PANAGIOTIS V BENOS其他文献

PANAGIOTIS V BENOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金

COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
  • 批准号:
    10689580
  • 财政年份:
    2022
  • 资助金额:
    $ 70.53万
  • 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
  • 批准号:
    10689574
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
  • 批准号:
    10206417
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
  • 批准号:
    10705824
  • 财政年份:
    2021
  • 资助金额:
    $ 70.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10440882
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10020437
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
Mapping Age-Related Changes in the Lung
绘制肺部与年龄相关的变化
  • 批准号:
    10473606
  • 财政年份:
    2019
  • 资助金额:
    $ 70.53万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    9753361
  • 财政年份:
    2018
  • 资助金额:
    $ 70.53万
  • 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
  • 批准号:
    10188612
  • 财政年份:
    2018
  • 资助金额:
    $ 70.53万
  • 项目类别:
Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
  • 批准号:
    9310591
  • 财政年份:
    2017
  • 资助金额:
    $ 70.53万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
Ethics Core (FABRIC)
道德核心 (FABRIC)
  • 批准号:
    10662376
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 70.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了