COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
基本信息
- 批准号:10705838
- 负责人:
- 金额:$ 70.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-24 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaAsthmaBiologyBloodCause of DeathCharacteristicsChronic DiseaseChronic Obstructive Pulmonary DiseaseClassificationClinicalClinical DataCollaborationsComplexComputing MethodologiesDataData CollectionData SetDetectionDevelopmentDiseaseDisease ManagementDisease ProgressionDisease modelEnrollmentEnsureEtiologyFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic DiseasesGenomicsGraphHealth Care CostsImageIncidenceIndividualLinkMachine LearningMeasurementMedicineMethodologyMethodsModalityModelingMolecularMolecular TargetMultiomic DataNatureOnset of illnessPathway interactionsPatientsPatternPhenotypePhysiologicalPulmonary function testsPulmonologyResearchResearch PersonnelSamplingScienceSeveritiesSeverity of illnessStable DiseaseSymptomsSyndromeSystemTestingTimeTissuesTrainingValidationVisitX-Ray Computed Tomographyairway obstructionanalytical methodchest computed tomographyclinical practiceclinical subtypesclinically relevantcohortcomputer frameworkcomputerized toolsdata integrationdata modelingdiagnostic tooldisabilitydisease phenotypedisorder subtypefollow-upgenetic variantgenomic dataimprovedinnovationinsightlearning algorithmmortalitymortality riskmultimodal datamultimodalitymultiscale dataperipheral bloodpersonalized predictionspersonalized therapeuticprecision medicinepredictive modelingprognostic toolprognostic valuepulmonary functionradiological imagingsuccesstreatment guidelinesunsupervised learningvector
项目摘要
COPD SUBTYPING AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL
MODELS
ABSTRACT
One of the main obstacles in developing efficient personalized therapeutic and disease management strategies
is that most common diseases are typically defined based on symptoms and clinical measurements, although
they are believed to be syndromes, consisting of multiple subtypes with variable etiology. Identifying disease
subtypes has thus become very important, but so far it has been met with limited success for most diseases. In
asthma, a notable exception, it was the clinical characterization that led to successful subtyping; and this is now
incorporated in treatment guidelines. Unsupervised machine learning approaches of single data modalities (e.g.,
omics, radiographic images) have not produced actionable subtypes due to instability across cohorts. Developing
data integrative approaches for multi-scale data, which are becoming available for a number of diseases, is
expected to lead to robust subtyping and provide mechanistic insights of disease onset and progression.
This proposal focuses on developing new computational methods, based on probabilistic graphical models
(PGMs), to address this unmet need; and apply them to investigate three problems of clinical importance in
chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of mortality in USA. Our
underlying hypothesis is that PGMs can integrate and analyze under the same probabilistic framework
heterogeneous biomedical data (omics, chest CT scan, clinical) and identify disease subtypes and their main
determinants. The objectives of our proposal is to build a comprehensive computational framework for disease
subclassification, identify stable COPD subtypes at the baseline and longitudinally, and build interpretable
models of the disease The deliverables of this project are: (1) new integrative computational approaches for
clinical subtyping from multi-scale data; (2) new predictors of COPD progression and severity; (3) new
discoveries of longitudinally stable COPD subtypes; (4) new predictors of future development of COPD; (5) new
omics datasets that will be invaluable to future research in the area (baseline and longitudinal).
To ensure the success of the project we follow a team science approach. This multi-PI proposal builds on the
ongoing efforts of our group in the area of graphical models and their applications in biomedicine; and the
ongoing collaboration of the three PIs that have complementary strengths: Prof. Benos (systems medicine and
machine learning), Dr. Hersh (COPD genetics and genomics) and Dr. Sciurba (clinical aspects of COPD). It is
powered by the access of the investigators to three major COPD cohorts (COPDGene®, SCCOR, ECLIPSE) that
contain multiple parallel deep phenotyping and omics data from thousands of patients and controls. Although in
this project we focus on COPD, our methods are generally applicable to any disease, therefore our project will
have a positive impact beyond the above deliverables. We believe that due to their robust nature and
interpretability, PGMs will soon become the norm for multi-scale biomedical data integration and modeling, when
genetic and genomic data collection will become routine prognostic and diagnostic tools in clinical practice.
综合概率图用于慢性阻塞性肺疾病分型和早期预测
模型
摘要
制定有效的个性化治疗和疾病管理战略的主要障碍之一
大多数常见疾病通常是基于症状和临床测量来定义的,尽管
它们被认为是综合征,由多种病因不同的亚型组成。辨别疾病
因此,亚型变得非常重要,但到目前为止,它在治疗大多数疾病方面的成功有限。在……里面
哮喘是一个显著的例外,它的临床特征导致了成功的亚型;这是现在
纳入治疗指南。单数据模式的无监督机器学习方法(例如,
基因组学、放射成像)由于队列之间的不稳定,尚未产生可操作的亚型。发展中
可用于多种疾病的多尺度数据的数据综合方法是
预计将导致强大的亚型,并提供对疾病发生和发展的机械性见解。
该提案侧重于开发基于概率图形模型的新计算方法
(PGMS),以解决这一未得到满足的需求;并将其应用于研究三个具有临床重要性的问题
慢性阻塞性肺疾病(COPD)是美国第四大死亡原因。我们的
潜在的假设是PGMS可以在相同的概率框架下进行集成和分析
异质生物医学数据(组学、胸部CT扫描、临床)并确定疾病亚型及其主要类型
决定因素。我们建议的目标是为疾病建立一个全面的计算框架
细分,在基线和纵向识别稳定的COPD亚型,并建立可解释的
本项目的成果是:(1)新的综合计算方法
来自多尺度数据的临床亚型;(2)COPD进展和严重程度的新预测因子;(3)新的
发现纵向稳定的COPD亚型;(4)COPD未来发展的新预测指标;(5)新的
将对该领域未来研究(基线和纵向)具有无价价值的组学数据集。
为了确保项目的成功,我们遵循团队科学的方法。这一多PI提案建立在
我们小组在图形模型及其在生物医学中的应用方面的持续努力;以及
三个具有互补优势的PI的持续合作:Benos教授(系统医学和
赫什博士(慢性阻塞性肺病遗传学和基因组学)和肖尔巴博士(慢性阻塞性肺病临床方面)。它是
由研究人员访问三个主要的COPD队列(COPDgene®、SCCOR、ECLIPSE)提供支持
包含来自数千名患者和对照的多个平行的深层表型和组学数据。虽然在
这个项目我们专注于COPD,我们的方法一般适用于任何疾病,因此我们的项目将
在上述可交付成果之外产生积极影响。我们相信,由于它们的健壮性质和
可解释性,PGMS将很快成为多尺度生物医学数据集成和建模的标准,当
基因和基因组数据收集将成为临床实践中常规的预后和诊断工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model to Predict Residual Volume from Forced Spirometry Measurements in Chronic Obstructive Pulmonary Disease.
一种通过强制肺活量测定来预测慢性阻塞性肺疾病残余量的模型。
- DOI:10.15326/jcopdf.2022.0354
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Evankovich,JohnW;Nouraie,SM;Sciurba,FrankC
- 通讯作者:Sciurba,FrankC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10689580 - 财政年份:2022
- 资助金额:
$ 70.53万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10689574 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 70.53万 - 项目类别:
Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
- 批准号:
9310591 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 70.53万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 70.53万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant














{{item.name}}会员




