COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
基本信息
- 批准号:10705838
- 负责人:
- 金额:$ 70.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-24 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaAsthmaBiologyBloodCause of DeathCharacteristicsChronic DiseaseChronic Obstructive Pulmonary DiseaseClassificationClinicalClinical DataCollaborationsComplexComputing MethodologiesDataData CollectionData SetDetectionDevelopmentDiseaseDisease ManagementDisease ProgressionDisease modelEnrollmentEnsureEtiologyFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic DiseasesGenomicsGraphHealth Care CostsImageIncidenceIndividualLinkMachine LearningMeasurementMedicineMethodologyMethodsModalityModelingMolecularMolecular TargetMultiomic DataNatureOnset of illnessPathway interactionsPatientsPatternPhenotypePhysiologicalPulmonary function testsPulmonologyResearchResearch PersonnelSamplingScienceSeveritiesSeverity of illnessStable DiseaseSymptomsSyndromeSystemTestingTimeTissuesTrainingValidationVisitX-Ray Computed Tomographyairway obstructionanalytical methodchest computed tomographyclinical practiceclinical subtypesclinically relevantcohortcomputer frameworkcomputerized toolsdata integrationdata modelingdiagnostic tooldisabilitydisease phenotypedisorder subtypefollow-upgenetic variantgenomic dataimprovedinnovationinsightlearning algorithmmortalitymortality riskmultimodal datamultimodalitymultiscale dataperipheral bloodpersonalized predictionspersonalized therapeuticprecision medicinepredictive modelingprognostic toolprognostic valuepulmonary functionradiological imagingsuccesstreatment guidelinesunsupervised learningvector
项目摘要
COPD SUBTYPING AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL
MODELS
ABSTRACT
One of the main obstacles in developing efficient personalized therapeutic and disease management strategies
is that most common diseases are typically defined based on symptoms and clinical measurements, although
they are believed to be syndromes, consisting of multiple subtypes with variable etiology. Identifying disease
subtypes has thus become very important, but so far it has been met with limited success for most diseases. In
asthma, a notable exception, it was the clinical characterization that led to successful subtyping; and this is now
incorporated in treatment guidelines. Unsupervised machine learning approaches of single data modalities (e.g.,
omics, radiographic images) have not produced actionable subtypes due to instability across cohorts. Developing
data integrative approaches for multi-scale data, which are becoming available for a number of diseases, is
expected to lead to robust subtyping and provide mechanistic insights of disease onset and progression.
This proposal focuses on developing new computational methods, based on probabilistic graphical models
(PGMs), to address this unmet need; and apply them to investigate three problems of clinical importance in
chronic obstructive pulmonary disease (COPD), which is the fourth leading cause of mortality in USA. Our
underlying hypothesis is that PGMs can integrate and analyze under the same probabilistic framework
heterogeneous biomedical data (omics, chest CT scan, clinical) and identify disease subtypes and their main
determinants. The objectives of our proposal is to build a comprehensive computational framework for disease
subclassification, identify stable COPD subtypes at the baseline and longitudinally, and build interpretable
models of the disease The deliverables of this project are: (1) new integrative computational approaches for
clinical subtyping from multi-scale data; (2) new predictors of COPD progression and severity; (3) new
discoveries of longitudinally stable COPD subtypes; (4) new predictors of future development of COPD; (5) new
omics datasets that will be invaluable to future research in the area (baseline and longitudinal).
To ensure the success of the project we follow a team science approach. This multi-PI proposal builds on the
ongoing efforts of our group in the area of graphical models and their applications in biomedicine; and the
ongoing collaboration of the three PIs that have complementary strengths: Prof. Benos (systems medicine and
machine learning), Dr. Hersh (COPD genetics and genomics) and Dr. Sciurba (clinical aspects of COPD). It is
powered by the access of the investigators to three major COPD cohorts (COPDGene®, SCCOR, ECLIPSE) that
contain multiple parallel deep phenotyping and omics data from thousands of patients and controls. Although in
this project we focus on COPD, our methods are generally applicable to any disease, therefore our project will
have a positive impact beyond the above deliverables. We believe that due to their robust nature and
interpretability, PGMs will soon become the norm for multi-scale biomedical data integration and modeling, when
genetic and genomic data collection will become routine prognostic and diagnostic tools in clinical practice.
应用积分概率图解法对COPD进行分型及早期预测
模型
摘要
发展有效的个性化治疗和疾病管理策略的主要障碍之一
最常见的疾病通常是根据症状和临床测量来定义的,尽管
它们被认为是由具有不同病因的多种亚型组成的综合征。鉴定疾病
因此,亚型变得非常重要,但迄今为止,它对大多数疾病的成功有限。在
哮喘是一个明显的例外,正是临床特征导致了成功的亚型分型;现在,
纳入治疗指南。单一数据模态的无监督机器学习方法(例如,
组学、放射影像学)由于跨群组的不稳定性而没有产生可操作的亚型。发展中
多尺度数据的数据整合方法,这是越来越多的疾病,
预期导致稳健的亚型分型并提供疾病发作和进展的机制见解。
该提案的重点是开发新的计算方法,基于概率图形模型
(PGMs),以解决这一未满足的需求;并将其应用于调查三个临床重要性的问题,
慢性阻塞性肺疾病(COPD)是美国第四大死亡原因。我们
基本假设是,PGMs可以在相同的概率框架下进行整合和分析
异质生物医学数据(组学、胸部CT扫描、临床)和识别疾病亚型及其主要
决定因素我们提案的目标是建立一个全面的疾病计算框架
子分类,在基线和纵向确定稳定的COPD亚型,并建立可解释的
该项目的成果是:(1)新的综合计算方法,
多尺度数据的临床亚型;(2)COPD进展和严重程度的新预测因子;(3)新的
发现纵向稳定的COPD亚型;(4)COPD未来发展的新预测因子;(5)新的
组学数据集,这将是非常宝贵的未来研究领域(基线和纵向)。
为了确保项目的成功,我们遵循团队科学的方法。这个多PI提案建立在
我们小组在图形模型及其在生物医学中的应用领域的持续努力;以及
三个具有互补优势的PI的持续合作:Benos教授(系统医学和
机器学习),Hersh博士(COPD遗传学和基因组学)和Sciurba博士(COPD的临床方面)。是
由研究者访问三个主要COPD队列(COPDGene®、SCCOR、ECLIPSE)提供动力,
包含来自数千名患者和对照组的多个平行深度表型和组学数据。虽然在
这个项目我们专注于COPD,我们的方法普遍适用于任何疾病,因此我们的项目将
除了上述可交付成果外,还产生积极影响。我们认为,由于其强大的性质和
可解释性,PGM将很快成为多尺度生物医学数据集成和建模的规范,
遗传和基因组数据收集将成为临床实践中常规的预后和诊断工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model to Predict Residual Volume from Forced Spirometry Measurements in Chronic Obstructive Pulmonary Disease.
一种通过强制肺活量测定来预测慢性阻塞性肺疾病残余量的模型。
- DOI:10.15326/jcopdf.2022.0354
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Evankovich,JohnW;Nouraie,SM;Sciurba,FrankC
- 通讯作者:Sciurba,FrankC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PANAGIOTIS V BENOS其他文献
PANAGIOTIS V BENOS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PANAGIOTIS V BENOS', 18)}}的其他基金
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10689580 - 财政年份:2022
- 资助金额:
$ 70.53万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10689574 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Interpretable graphical models for large multi-modal COPD data (R01HL159805)
大型多模态 COPD 数据的可解释图形模型 (R01HL159805)
- 批准号:
10705824 - 财政年份:2021
- 资助金额:
$ 70.53万 - 项目类别:
Systems Biology of Diffusion Impairment in HIV
HIV扩散损伤的系统生物学
- 批准号:
10188612 - 财政年份:2018
- 资助金额:
$ 70.53万 - 项目类别:
Systems Level Causal Discovery in Heterogeneous TOPMed Data
异构 TOPMed 数据中的系统级因果发现
- 批准号:
9310591 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 70.53万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 70.53万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 70.53万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 70.53万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 70.53万 - 项目类别:
Standard Grant














{{item.name}}会员




