Development of a micromechanical thermogravimetric tool for investigation of biominerals
开发用于研究生物矿物的微机械热重分析工具
基本信息
- 批准号:269130442
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biominerals are a source of inspiration for the development of new materials given their unique properties, hierarchical organization and hybrid composition (organic-inorganic composites). This trapped material plays an important role in determining its intrinsic properties. Thus, both the exact content and the distribution of organic compounds must be measured and further correlated to given specific property (e.g. mechanical). However, these measurements are limited by quantity/size constrains, i.e., mm-cm and/or >50 mg and to the use of classical thermogravimetric analysis. This project aims to develop and implement a thermogravimetric analysis capable of analyzing the organic content micro-sized objects with masses as small as 1 ng with mass resolution of 1pg. The direct analysis of microsized, individually selected objects will allow us to eliminate artifacts associated with bulk analysis. This analytic technique is based on a resonating heated microstructure (cantilever) that, upon resonance frequency shifts, will allow us to quantify temperature-induced mass changes (1pg). Upon methodology establishment, both synthetic and natural CaCO3-based biominerals will be used as proof-of-concept. A correlation between organic mass content and its distribution (determined by scanning force microscopy) will be revealed. Further, we aim to develop the following goals: a) in situ monitoring of crystallographic processes (mass loading determination) by functionalizing the microdevices heatable tips with biomolecules and promoting CaCO3 direct crystallization onto the microdevice. In addition local determination of organic content will be performed; b) development of a custom-made high performance microdevices with high Q-factors resolution, a uniform temperature distribution and a defined sample platform together with our cooperation partner (Prof. Rao, IIT, India); c) implementation of in situ IR-absorption measurements carried out on heatable microdevices for direct monitoring of crystal phase-transitions (amorphous-crystalline) not associated with an organic influence (Prof. Thundat, University Alberta, Canada).
生物矿物是开发新材料的灵感来源,因为它们具有独特的特性,分层组织和混合组成(有机-无机复合材料)。这种被捕获的材料在确定其固有特性方面起着重要作用。因此,必须测量有机化合物的确切含量和分布,并进一步与给定的特定性质(例如机械)相关联。然而,这些测量受到数量/尺寸约束的限制,即,mm-cm和/或> 50 mg,并使用经典的热重分析。本项目旨在开发和实施一种热重分析方法,该方法能够分析质量小至1 ng的微型物体的有机含量,质量分辨率为1 pg。直接分析微尺寸的,单独选择的对象将使我们能够消除与批量分析相关的工件。这种分析技术是基于一个共振加热的微结构(悬臂梁),在共振频率的变化,将使我们能够量化温度引起的质量变化(1pg)。在方法建立后,合成和天然碳酸钙基生物矿物将被用作概念验证。将揭示有机质含量及其分布(由扫描力显微镜测定)之间的相关性。此外,我们的目标是开发以下目标:a)通过用生物分子功能化微器件可加热尖端并促进CaCO3直接结晶到微器件上来原位监测结晶过程(质量负载测定)。此外,还将进行有机物含量的本地测定; B)与我们的合作伙伴一起开发定制的高性能微型器件,该器件具有高Q因子分辨率、均匀的温度分布和定义的样品平台(Rao教授,印度理工学院); c)在可加热的微型器件上进行原位红外吸收测量,以直接监测晶体相变(无定形-结晶)与有机物的影响无关(Thundat教授,加拿大阿尔伯塔大学)。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pico-thermogravimetric material properties analysis using diamond cantilever beam
使用金刚石悬臂梁进行皮热重材料特性分析
- DOI:10.1016/j.sna.2018.01.004
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ioana Voiculescu;Meiyong Liao;Marjan Zakerin;Rüdiger Berger;Takahito Ono;Masaya Toda
- 通讯作者:Masaya Toda
Critical analysis of micro-thermogravimetry of CuSO4·5H2O crystals using heatable microcantilevers
- DOI:10.1088/1361-6439/ab30a3
- 发表时间:2019-07
- 期刊:
- 影响因子:2.3
- 作者:N. Tiwary;M. Zakerin;F. Natalio;E. Biegler;Fritzsche Marco;Hermann Kaubitzsch;A. Laha;R. Berger;V. Rao
- 通讯作者:N. Tiwary;M. Zakerin;F. Natalio;E. Biegler;Fritzsche Marco;Hermann Kaubitzsch;A. Laha;R. Berger;V. Rao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Rüdiger Berger其他文献
Dr. Rüdiger Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Rüdiger Berger', 18)}}的其他基金
Electronic Bistable Recording Media for Scanning Multiprobe based Ultrahigh-Density Data Storage
用于扫描多探头的超高密度数据存储的电子双稳态记录介质
- 批准号:
151226304 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Surface impact in polydisperse polymer systems
多分散聚合物体系中的表面影响
- 批准号:
67478662 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Focusing Effect for Sliding Drops Induced by Adaptive Surfaces
自适应表面引起的滑动水滴的聚焦效应
- 批准号:
505838917 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Replicating the cartilage micromechanical environment
复制软骨微机械环境
- 批准号:
DP240102160 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
- 批准号:
10715565 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidation of mechanisms underlying mechanical stimulus perception and Ca2+ propagation by micromechanical stimulation in living cells
阐明活细胞中微机械刺激机械刺激感知和 Ca2+ 传播的机制
- 批准号:
23K18133 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
- 批准号:
2227842 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
- 批准号:
10533408 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
- 批准号:
2143808 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Multimodal and Multiscale-driven Quantification of Micromechanical Metrics for Location-specific Fatigue Microcracking
特定位置疲劳微裂纹的多模态和多尺度驱动的微机械指标量化
- 批准号:
2152369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Towards a Micromechanical Damage Model for Lightweight Materials in Vehicle Crash
车辆碰撞中轻质材料的微机械损伤模型
- 批准号:
RGPIN-2017-04716 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
- 批准号:
2740323 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship