Development of a model order reduction method for the direct generation of time-discrete, low-dimensional models of machine tools
开发一种模型降阶方法,用于直接生成机床的时间离散、低维模型
基本信息
- 批准号:269396201
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of modern machine tools is under great innovation, time and cost pressure. With continuous growth of productivity demands, also the complexity of machine tools increases. There is a high demand for innovative methods of developing and testing, to handle with these challenges. It results in preventing expensive design- or development-failures of a physical prototype as well as reducing commissioning times at a later point in time. Therefore time-deterministic models are needed, on the one hand having a high model quality and on the other hand a solution at a predetermined time step. Due to the model size of typical finite element models, these time steps are not suitable for real-time computations. Consequently, there is a demand for adapted model order reduction to solve real time problems. Currently, no such automated procedure for the creation of real-time computable systems exists applicable for complex finite-element models. The subject of this research project is to develop a model order reduction method for the direct generation of time-discrete, low-dimensional models of machine tools. The main goal of the project is the automated and customized application specific provision of discrete-time, deterministic, reduced systems to real-time capable models of the dynamic behavior of machine tools. For this purpose an innovative model order reduction method will be developed, which provides a low-dimensional approximation for a fixed time step of an original model along with the associated error estimate and retaining inherent system properties (such as passivity, steady-state accuracy). The method is based on high-dimensional ordinary differential equations and differential-algebraic equations, which are provided by finite element models of machine tools or rather machine modules. Furthermore, the method allows for the consideration of the time step for real-time calculations. In addition, the error estimation serves as abort criterion allowing the automatic model order reduction. Through interdisciplinary cooperation of production engineering and mathematics to support this innovative process and shorten the development of mechatronic systems and as machine tool is provided. This method is used in the early stage of the development process as far as to the point of virtual commissioning. The method makes a major contribution to the creation of structural models and to the increase of the accuracy of these models.
现代机床的发展面临着巨大的创新、时间和成本压力。随着生产力需求的不断增长,机床的复杂性也随之增加。为了应对这些挑战,对创新的开发和测试方法的需求很高。它可以防止物理原型代价高昂的设计或开发失败,并减少以后的调试时间。因此,需要时间确定性模型,一方面具有高模型质量,另一方面具有预定时间步长的解。由于典型有限元模型的模型大小,这些时间步长不适合实时计算。因此,需要适应模型降阶来解决实时问题。目前,尚不存在适用于复杂有限元模型的用于创建实时可计算系统的自动化程序。该研究项目的主题是开发一种模型降阶方法,用于直接生成机床的时间离散、低维模型。该项目的主要目标是自动化和定制的应用程序特定提供离散时间、确定性、简化的系统到机床动态行为的实时模型。为此,将开发一种创新的模型降阶方法,该方法为原始模型的固定时间步长提供低维近似以及相关的误差估计并保留固有的系统属性(例如无源性、稳态精度)。该方法基于高维常微分方程和微分代数方程,这些方程由机床或更确切地说是机器模块的有限元模型提供。此外,该方法允许考虑实时计算的时间步长。此外,误差估计用作允许自动模型降阶的中止标准。通过生产工程和数学的跨学科合作来支持这一创新过程并缩短机电一体化系统和机床的开发时间。这种方法用于开发过程的早期阶段直至虚拟调试。该方法对结构模型的创建和这些模型精度的提高做出了重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Timo Reis其他文献
Professor Dr. Timo Reis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Timo Reis', 18)}}的其他基金
Problemorientierte Modellreduktionsverfahren für endlich- und unendlichdimensionale Deskriptorsysteme
有限和无限维描述符系统的面向问题的模型简化方法
- 批准号:
85296572 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
- 批准号:82371912
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
- 批准号:31970753
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
凯莱流形上的几何流
- 批准号:11771301
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Mechanism of Transcriptional Regulation of Th2 Cell Development
Th2细胞发育的转录调控机制
- 批准号:
10716014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of recombinant VSV vaccines for emerging bunyaviruses
针对新兴布尼亚病毒的重组 VSV 疫苗的开发
- 批准号:
10603853 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of a novel multipurpose model to propagate and study the tick transmission cycle of relapsing fever spirochetes from Eurasia.
开发一种新型多用途模型,用于繁殖和研究欧亚大陆回归热螺旋体的蜱传播周期。
- 批准号:
10651550 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Base Title: PREVENT Preclinical Drug Development Program: Preclinical Efficacy and Intermediate Endpoint BiomarkersTask Order Title: Colorectal Cancer (CRC) Prevention by TPST-1495 in PIRC rat mod
基本标题:预防临床前药物开发计划:临床前功效和中间终点生物标志物任务顺序标题:TPST-1495 在 PIRC 大鼠模型中预防结直肠癌 (CRC)
- 批准号:
10927554 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
- 批准号:
22KJ0183 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
PREVENT Preclinical Drug Development Program: Preclinical Efficacy and Intermediate BiomarkersTask Order Title: Sulforaphane for the Prevention of Malignant Mesothelioma
PREVENT 临床前药物开发计划:临床前功效和中间生物标志物任务单标题:萝卜硫素用于预防恶性间皮瘤
- 批准号:
10836806 - 财政年份:2023
- 资助金额:
-- - 项目类别:
BASE TITLE: PREVENT PRECLINICAL DRUG DEVELOPMENT PROGRAM: PRECLINICAL EFFICACY AND INTERMEDIATE ENDPOINT BIOMAKERSTASK ORDER TITLE: VACCINES AGAINS
基本标题:预防临床前药物开发计划:临床前疗效和中间终点 BIOMAKERSTASK 订单标题:再次疫苗
- 批准号:
10651935 - 财政年份:2022
- 资助金额:
-- - 项目类别:
TASK ORDER B-15: Model Development and Medical Countermeasure Evaluation
任务令 B-15:模型开发和医疗对策评估
- 批准号:
10914394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
TASK ORDER TITLE: MICROBIAL METABOLITE MIMICRY, A NANO-DRUG FOR COLON CANCER PREVENTIONPREVENT PRECLINICAL DRUG DEVELOPMENT PROGRAM: PRECLINICAL EFF
任务单标题:微生物代谢物拟态,一种预防结肠癌的纳米药物预防临床前药物开发计划:临床前 EFF
- 批准号:
10706658 - 财政年份:2022
- 资助金额:
-- - 项目类别:
TASK ORDER TITLE: PREVENTING LUNG ADENOCARCINOMA (LUAD) USING TRAIL INDUCING AGENT, ONC201BASE CONTRACT TITLE: PREVENT PRECLINICAL DRUG DEVELOPMENT
任务单标题:使用踪迹诱导剂预防肺腺癌 (LUAD),ONC201BASE 合同标题:预防临床前药物开发
- 批准号:
10705393 - 财政年份:2022
- 资助金额:
-- - 项目类别: